
Using data.table for simple agent/individual based models

Kaare Græsbøll
Email : kagr@dtu.dk
Department of Applied Mathematics and Computer Science, Technical University of Denmark

The package data.table for R is an extension to the data.frame which is known for its ability to handle large

amount of data fast and efficiently. A side effect of the syntax of data.table is that is allows for writing

individual based models of disease spread with ease.

Pros

Individual based modelling in data.table is advantageous because of the

build in counting by group feature, which makes syntax concise.

Working directly in R using inline testing means fast development.

A good way of making hypothesis generating models.

Special

Generally all R functions work with data.table.

However data.table has a few extra to boost efficiency

of code. Two of which we use here:

.N holds the number of rows in the current group. A

more efficient way of doing length().

:= assign by reference. A more memory efficient way

of updating inside a data.table. It has a side-effect

which correspond to merging results onto original

dataset.

Functions applied on data.table do not copy data (fewer scoping issues)

Cons

Even though data.table is faster than data.frame it cannot compete with

C or Fortran in terms of speed. So for large models this is probably not a

good solution.

Basic

The general form of data.table syntax

is:
DT[i, j, by]

i: handles subsetting by rows similar

to data.frame.

j: subset AND compute on columns

by: group by columns by specifying

a list of columns or a character vector

of column names or even expressions

Example

When counting number of infected pigs inside

each pen:

ibm[,NinfPen := sum(infStatus), by = penID]

The := operator updates the NinfPen column with

the number of infected pigs per pen, for all pigs.

When assigning disease

ibm[infStatus==0L , rbinom(.N, 1, prob = ptrans)]

The .N variable gives the numbers to draw.

data.table syntax

nsecs <- 3 # number sections

npens <- 10 # pens per section

npigsp <- 15 # pigs per pen

npigs <- nsecs * npens * npigsp # number of pigs

create ibm

ibm <- data.table(

ID = 1:npigs,

penID = rep(1:(npens*nsecs), each = npigsp),

sectionID = rep(1:nsecs, each = npens * npigsp),

infStatus = 0

)

infection rates

irPen <- 0.2

irSec <- 0.02

irFarm <- 0.002

randomly infect some pigs

ibm[sample(ID,1),infStatus := 1]

wrap in time for loop

ntime <- 100

Ninf <- matrix(0, ncol = nsecs, nrow = ntime)

Ninf[1,] <- ibm[, .(Ninf = sum(infStatus)), sectionID]$Ninf

for (i in 2:ntime)

{

update

ibm[,NinfPen := sum(infStatus), by = penID] # No. infected by pen

ibm[,NinfSec := sum(infStatus), by = sectionID] # No. infected by section

transmission probability

ibm[,ptrans := 1 -

exp(- irPen * NinfPen/npigsp -

irSec * (NinfSec-NinfPen)/ ((npens-1) * npigsp) -

irFarm * (sum(infStatus) - NinfSec) / ((nsecs-1) * npens *

npigsp))]

transmission

ibm[infStatus==0L , infStatus := rbinom(.N, 1, prob = ptrans)]

count infected pigs per section

Ninf[i,] <- ibm[, .(Ninf = sum(infStatus)), sectionID]$Ninf

}

Code

Right: The complete code necessary to model transmission of a disease

on a pig farm with individual pigs in pens, belonging to different sections

of the farm.

Bottom: Figure showing number of infected pigs per section.

This code could easily be expanded by adding more features to

individual pigs to modify i.e. transmission rates, or have individual cure

rates etc.

Repetitions could be included by adding an extra group, so that

confidence intervals could be estimated.

Code could be easily wrapped into a Shiny for interactive use.

SVEPM 2020 – Westport, Ireland

25th-27th March 2020

