

diagnosis of Cushing's?"

Imogen Schofield¹, David Brodbelt¹, Stijn Niessen^{2,3}, David Church², Rebecca Geddes², Noel Kennedy¹ and Dan O'Neill¹

¹ Department of Pathobiology and Population Sciences, Royal Veterinary College, UK
 ² Department of Clinical Science and Services, Royal Veterinary College, UK
 ³ The VetCT Telemedicine Hospital, St John's Innovation Centre, Cambridge, UK

Contact: ischofield6@rvc.ac.uk

Background

Novel methods to aid the identification of dogs with Cushing's syndrome (CS) are warranted to optimise certainty in diagnostic blood test interpretation, reduce unnecessary testing and to aid decision-making for primary-care practitioners

Methods

- Prediction model was
 developed using
 multivariable binary logistic
 regression with backward
 stepwise selection
- 2. The model's predictive performance, measured by calibration and discrimination, was assessed and internally validated through bootstrap re-sampling
- 3. A clinical prediction tool that estimates the probability of CS was developed based on the function of the regression model coefficients

Multivariable results

Predictor	Category	Beta coefficient	Adjusted beta	Points	Rounded points
Sex	Female-entire	Baseline	-		0
	Female-neutered	-0.66	-0.57	-1.78	-2
	Male-entire	-0.35	-0.30	-0.94	-1
	Male-neutered	-0.60	-0.52	-1.62	-2
Age (years)	<7	Baseline	_	_	0
	≥7	0.70	0.61	1.91	2
Polydipsia	Yes	0.92	0.80	2.50	3
	Νο	Baseline	-	_	0
Thin/dry skin	Yes	0.37	0.32	1.00	1
	Νο	Baseline	-	-	0
Vomiting	Yes	-0.75	-0.65	-2.03	-2
	Νο	Baseline	-	-	0
Potbelly	Yes	1.05	0.91	2.85	3
	Νο	Baseline	_	_	0
Alopecia	Yes	0.85	0.74	2.31	2
	Νο	Baseline	-	_	0
Pruritus	Yes	-1.14	-0.98	-3.08	-3
	Νο	Baseline	-	_	0
Breed	Crossbreed	Baseline	-	-	0
	Bichon frise	0.66	0.57	1.80	2
	Border terrier	0.93	0.80	2.53	3
	Labrador	-1.07	-0.93	-2.91	-3
	Other purebred	-0.10	-0.09	-0.28	0
	Schnauzer	-0.76	-0.66	-2.07	-2
	WHWT	-1.11	-0.96	-3.02	-3
	Yorkshire terrier	0.04	0.03	0.11	0
USG	Dilute	Baseline	_	-	0
	Not dilute	-0.88	-0.76	-2.39	-2
	Unknown	-0.42	-0.36	-1.13	-1
ALKP	Elevated	Baseline	-	_	0
	Not elevated	-1.58	-1.37	-4.29	-4
	Unknown	-0.18	-0.15	-0.48	0
Constant		-0.49	-0.42		

Revised coefficients to account for model overfitting was estimated through bootstrapping

A common denominator was applied to the coefficients to develop the tool's point system

Good model performance

The developed model demonstrated good discrimination (AUROC = 0.79; 95% CI 0.76 – 0.81) and calibration (C-slope = 0.86)

Interpretable and practical prediction tool

- A points system was developed from the coefficients of the final model to create a tool for interpretation at the individual dog level.

The tool has a scoring system of -16 to 12: An individual dog scoring

12 reflects a 97% likelihood of having CS and -16 reflects a 0% likelihood

Conclusion

The developed prediction tool can be used in clinical practice to support decision-making and increase confidence in diagnosis of CS

- 1. Collins, G. S., Reitsma, J. B., Altman, D. G. and Moons, K. G. M. (2015) 'Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement', *BMC Medicine*, 13(1), 1
- Goldstein, B. A., Navar, A. M., Pencina, M. J. and Ioannidis, J. (2017) 'Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review', *Journal of the American Medical Informatics Association*, 24(1), 198-208.
- 3. Steyerberg, E. W. and Vergouwe, Y. (2014) 'Towards better clinical prediction models: seven steps for development and an ABCD for validation', *European Heart Journal*, 35(29), 1925-31.