Clostridioides difficile in Irish Pigs – a Preliminary Study

Máire C.McElroy¹, Martin Hill¹, Geraldine Moloney², Shane McGettrick¹, Áine O'Doherty¹, Micheál Mac Aogáin² and Thomas R.Rogers².

¹Central Veterinary Research Laboratory, DAFM, Backweston; ²Department of Medical Microbiology, Trinity College Dublin

Introduction

Clostridioides difficile is a toxin-producing, Gram-positive, sporeforming, anaerobic enteropathogen of humans and animals. It is recognised as a cause of porcine neonatal diarrhoea. [1-3].

Porcine *C. difficile* -associated disease (CDAD) typically manifests itself as early-onset diarrhoea in piglets 1-7 days of age.

C. difficile is also one of the most important nosocomial pathogens of humans. In recent years the epidemiology of human disease is changing with more community-acquired infections and emergence of strains in humans that are common in domestic animals [4].

Therefore, considerable interest is developing in the potential zoonotic capabilities of C. difficile.

Objectives

To investigate the prevalence of *C. difficile* in colonic contents of pigs referred for diagnostic necropsy to the Central Veterinary Research Laboratory, Backweston

 \succ To compare strains identified with those identified in human C. difficile associated disease in Ireland.

Materials and Methods

Samples (n=188)

- Neonatal piglets (n=81) \succ With diarrhoea (n=75); \succ without diarrhoea (n=6)
- \succ Other pigs (n=107)
 - \succ With diarrhoea (n=30);
 - without diarrhoea: n=77

Methods

 \succ Histopathology (n=58 neonatal piglets)

ELISA A/B Toxins: Premier Elisa Kit Toxins A&B, Meridian Bioscience Inc.

 \succ Isolation and PCR Ribotyping (n=65): as previously described [3]

Statistics: Fischer exact test

Results

➢ Pigs came from 30 farrow-to-finish farms

Histopathology: Twelve of the

- Median tested per farm: 4
- Farms were in 15 counties, widely geographically distributed
- \geq 106 (56%) of samples were positive
- > Positive samples were detected on all 30 farms (9% of commercial herds in Ireland)

> Age Profile: Colonisation rate decreased with age

- piglets had an acute, ulcerative fibrinosuppurative typhlocolitis typical of CDAD
- ► Colitis in neonatal piglets was not associated with detection of toxins A/B (p=1.0) - This may have been due to the high rate of colonisation

Superficial erosive and necrotising coli and fibrin spilling into lumen ('volcano lesion' – arrow

R 078 R 014/020 **R** 110 **R** 017 **R** 011

>Association with diarrhoea: Detection of *C. difficile* toxins was not associated with diarrhoea (p=0.367)

prevalent PCR ribotypes were R 078 and R 014/020

PCR ribotypes: The most

Comparison with human strains: The most prevalent PCR ribotypes from porcine isolates are similar to those from human isolates [5]

Conclusions

Colonisation of Irish pigs with *C. difficile* is common

Therefore clinical significance of a positive C. difficile toxin result in a faecal sample cannot be interpreted in isolation from histopathology

 \geq R 078 and R 014/020 were the most common ribotypes

References

 \succ The diversity of ribotypes identified reflects:

• those seen in pigs in other countries

those seen in human CDAD in Ireland

 \blacktriangleright A better understanding of the epidemiology of this pathogen in farm animals is required to elucidate risk factors for colonisation, any public health risks and potential interventions to mitigate these.

1. Songer JG. The emergence of Clostridium difficile as a pathogen of food animals. Anim Health Res Rev. 2004; 5:321-6) .
--	------------

- Debast SB, van Leengoed LA, Goorhuis A, Harmanus C, Kuijper EJ, Bergwerff AA. *Clostridium difficile* PCR ribotype 078 toxinotype V found in diarrhoeal pigs identical to 2. isolates from affected humans. Environ Microbiol. 2009; 2:505-11
- McElroy MC, Hill M, Moloney G, MacAogáin M, McGetrrick S, O'Doherty Á, Rogers TR Typhlocolitis associated with *Clostridium difficile* ribotypes 078 and 110 in neonatal piglets 3. from a commercial Irish pig herd. IVJ(2016) 69:10.
- Squire MM, Riley TV. Clostridium difficile infection in humans and piglets: a 'One Health' opportunity. Curr Top Microbiol Immunol. 2013;365:299-314
- Clostridium difficile infection. In: Health Protection Surevillance CentreAnnual Epidemiological Report 2014 http://www.hpsc.ie/AboutHPSC/AnnualReports/File,15505,en.pdf. 5.

Acknowledgement: Geraldine Moloney was recipient of Research Training Fellowship for Healthcare Professionals HPF-2014_716 (Health Research Board Ireland)

Contact: Máire McElroy maire.mcelroy@agriculture.gov.ie