Estimating antimicrobial usage based on sales from a veterinary practice to beef & dairy farms, & challenges with denominator data

R. W. Humphry¹, M. K. Henry¹, A. Reeves¹, C. Correia-Gomes³, R. Smith², G.J. Gunn¹, S. C. Tongue¹

¹ Epidemiology Research Unit, Dept. of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), An Lòchran, Inverness Campus, Inverness, IV2 5NA; ² c/o Humphry, at the above address (¹)

³ Animal Health Ireland, 4-5 The Archways, Carrick-On-Shannon, Co. Leitrim, N41 WN27

www.sruc.ac.uk

Email: roger.humphry@sruc.ac.uk

Introduction

Target-setting to help reduce antimicrobial usage (AMU) in agriculture depends on well-defined and appropriate "metrics".

We assess a method for estimating one such metric (sales of antimicrobial per kg of bovine animal).

Methods

Data: Pharmaceutical sales from a veterinary practice and herd demographic data (from agricultural census).

75 cattle herds & years 2011-2015 → 378 complete herd-years of data.

Ratios of antimicrobial sales per total kg of bovine calculated for each herd-year. The denominator was increased by $\frac{1}{2}$ of the minimum value to prevent division by zero (true for 2 observations).

Results: ratio of numerator/denominator

Fig 1. Total weight (kg) of active ingredient (a.i.) of antimicrobial sold and total weight (kg) of animal for each herd-year. Colours indicate the percentile range in which the ratio for each point belongs.

We see:

- As expected. a clear positive relationship between herd size and usage (Fig 1)
- Low ratios (bottom 5% of sales per kg) appear to be driven by low total sales (Fig 1 – blue dots)
- However, high ratios (top 5% of sales per kg) appear to be driven by fairly small herds (Fig 1 – pink dots)
- In particular the highest ratios (top 1%) all came from VERY small herds (Fig 1 green dots)

Table 1. High, medium & low ratios cross-tabulated with high and low numerator or denominator values.		Low Ratio ≤1 mg/kg	Med + High Ratio >1 mg/kg	Medium 1 <ratio<= 50 mg/kg</ratio<= 	Low + Med Ratio ≤50 mg/kg	High Ratio > 50 mg/kg
	<u>Numerator:</u> Weight of a.i. in bottom 90%	9	322	315	324	7
	Weight of a.i. in top 10%	0	37 (P=0.61	37	37	0 (P=1)
	All 7 with ratio > 50 mg/kg had a small denominator					
	<u>Denominator: </u> Weight of bovine in top 90%	7	324	324	331	0
	Weight of bovine in bottom 10%	2	35 (P=0.23)	28	30	<u>7</u> (P<10 ⁻⁷)

Conclusions

- Despite using an inclusive denominator (i.e. all bovines), we still encountered two herd-years with 0kg recorded via the agricultural census
- The importance of particularly low estimates for the denominator is mathematically clear but **empirically** demonstrated here. Outlying high estimates for usage per kg of animal all came from those herd-years with very low total weights of animal.
- · Our method seems to work for large herds but appears flawed for small herds
- Standardising usage in relation to herd size is clearly necessary BUT...
- · Ratios designed for national-level targets may not be applicable to herd-level targets
- Perhaps these denominator data (agricultural census) are applicable to national estimates but unfit for this particular purpose – i.e. the comparison of herd years?

Acknowledgements

This work was funded by the Scottish Government within the RESAS 2011–2016 research programme and the Strategic Research Programme 2016 – 2021.

Further information is available from:

Dr Roger W. Humphry, Epidemiology Research Unit, SRUC Research, An Lòchran, Inverness Campus, Inverness, IV2 5NA Tel: +44 (0)1463 246060

