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Motivation
Lameness is a common problem in dairy cows and
can substantially a�ect the welfare and productiv-
ity of these animals. Lameness does not only impair
the mobility of cows, but has major e�ects on be-
havioural patterns such as grooming behaviour and
number of visits to the feed bunk [1]. Di�erent types
of statistical models were devised including variables
and parameters which can be a�ected by lameness,
such as rumination, feeding and movement patterns,
milk production, days in milk (DIM) or weight and
aimed to detect lameness in cows with a high accu-
racy[2,3].

Our goal is to develop a lameness prognostic model

for the data set collected from seven farms in Ger-

many. It would be useful to develop several models,

taking into account the di�erent parameters a�ected

by lameness and to select one most suitable model

that could be universal in the future. The descrip-

tion of the data and its processing allows to explore

the dynamics of daily activity patterns in dairy cows

identi�ed as being lame or non-lame by visual mo-

bility scoring and choose appropriate parameters for

developed models.

Data Processing
Mean measured parameters:

• daily averaged activity per hour from pe-
dometer/accelerometer: number of steps
per hour and lying duration (min/bout)

• parity
• lactation stage � days in milk (DIM)
• daily milk yield

Daily average activity and milk yield averaged
over three days before locomotion scoring for
lame (locomotion score ≥ 3) and non lame (lo-
comotion score < 3) cows in dependence on the
cow parity and DIM. The red and blue colors
denote non-lame (0) and lame (1) cows.

Seasonality/farm dependence
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Numbers of lame and non-lame cows per observation and
over time. (left) The cases of lameness scoring per week rep-
resented by a stacked histogram. Non-lame (0) and lame (1)
status is shown by colour. (right) The number of cows as-
signed to status (persistently) lame, non-lame, mixed) based
on results of mobility scoring in seven farms. As mixed
cows with interchanging lame/non-lame states were de�ned.
Green, blue and brown colour correspond to mixed, persis-
tent lame, and persistent non-lame cows correspondingly.

Logistic regression model
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with β being a vector of regression coe�cients (�xed

e�ects) and xit being a matrix of major independent

or explanatory variables listed in Table. ui are ran-

dom e�ects of unit i from the overall mean β0 and

εit is the error vector (unobserved) which is uncor-

related with the random e�ects vector. π = µy is a

conditional mean (i.e. the probability that the tar-

get variable yit = 1 (lame) provided the existing xit
values). Then ( π

1−π ) gives us the odds-ratio, that

yit = 1 and log
(

π
1−π

)
is log odds or logit.

Logistic regression model with mixed effects
Variables used in the model

Variable Meaning

mean_steps
j

�xed e�ect referring to the individual cow's activity (number of steps) accounting for the j-th number of
days between activity recording and locomotion scoring (j = [1..3])

mean_lay
j

�xed e�ect referring to the individual cow's activity (lying duration) accounting for the j-th number of
days between activity recording and locomotion scoring (j = [1..3])

mean_yield
j

�xed e�ect referring to the individual cow's developments of daily milk yield accounting for the j-th
number of days between yield measurement and locomotion scoring (j = [1..3])

lactk �xed e�ect as well as random e�ect (random slope dependent on individual cow) of the k-th parity class
(k = [1..10]) s

DIM �xed e�ects of the stage of lactation or days in milk considered as a continuous variable
season Season can take values: Spring, Summer, Autumn, and Winter
cowi random permanent environmental e�ect (random slope) of the i-th animal (i = [1..2757])

ε random residual

Results for logistic regression model with random e�ects for lameness status as dependent variable.

Interactions were taken into account (vari : varj) and all variables were re-scaled

Fixed e�ects Estimate odd ratios Std. Error p�value

Intercept -1.648 0.192 0.114 < 2e − 16 ***
mean_steps -0.046 0.955 0.034 0.18
mean_lay -0.083 0.92 0.038 0.029 *

lact 0.581 1.788 0.044 < 2e − 16 ***
DIM -0.016 0.984 0.075 0.825

mean_yield -0.301 0.740 0.040 5.65e-14 ***
season_Spring -0.227 0.797 0.106 0.033 *

season_Summer 0.187 1.206 0.583 0.748
season_Fall 0.049 1.050 0.121 0.687

mean_steps:season_Spring -0.008 0.992 0.050 0.876
mean_steps:season_Summer -0.338 0.713 0.167 0.043 *

mean_steps:season_Fall 0.121 1.128 0.061 0.050 *
mean_lay:DIM 0.055 1.057 0.026 0.032 *

mean_lay:season_Spring 0.058 1.059 0.049 0.236
mean_lay:season_Summer 0.174 1.190 0.254 0.493

mean_lay:season_Fall 0.119 1.127 0.064 0.062 .
lact:DIM -0.114 0.892 0.0297 0.0001 ***

lact:season_Spring 0.083 1.087 0.0396 0.035 *
lact:season_Summer 0.094 1.099 0.158 0.549

lact:season_Fall 0.003 1.003 0.047 0.948
mean_yield:season_Spring 0.141 1.152 0.05 0.005 **

mean_yield:season_Summer 1.026 2.790 0.313 0.001 **
mean_yield:season_Fall 0.166 1.180 0.074 0.025 *

Random e�ects

Groups Names Variance Std. Error

cow Intercept 5.23578 2.2882
lact 0.08462 0.2909

Signi�cance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Quality of predictions

Probability of lameness in dependence on the meansteps
(left) and daily milk yield (right) taking into parity . Note
that continuous variables were re-scaled.
Probability of lameness in dependence on the year season:

Summary

1 Based on the analysis of accelerometer activity data as
well as cow-individual meta-data, it was built a statistical
model (logistic regression with mixed e�ects) able to detect
lameness with 86% sensitivity and 82% speci�city.
2 The resulting model includes a large number of easily
measurable variables and can be used by any researcher,
since the code in R is accessible and user-friendly written.
3 Model �ndings constitute a foundation for development
of computer assisted decision support systems for automated
surveillance and intervention planning in dairy industry.

References
[1] Mandel, R., Harazy, H., Gygax, L., Nicol, C. J., Ben-David, A., Whay, H. R., & Klement, E. (2018). Detection of lameness in dairy cows using a grooming device. Journal of dairy science,
101(2), 1511-1517.
[2] Hertem T., Bahr C., Schlageter-Tello A., Viazzi S., Steensels M., Romanini C.E.B., Lokhorst C., Maltz E., Halachmi I.,Berckmans D.,Lameness detection in dairy cattle: single predictor
v. multivariate analysis of image-based posture processing and behaviour and performance sensing. Animal (2016) 10 1525�32

[3] Miekley B., Traulsen I., Krieter J., Principal component analysis for the early detection of mastitis and lameness in dairy cows. Journal of Dairy Research (2013) 80 335�343


