

Spatial Epidemiology of Highly Pathogenic Avian Influenza H5N6 in Gyeonggi Province, South Korea, 2016-2017

sgjun3@gmail.com

<u>Jun-Sik Lim¹</u>, Ricardo Soares Magalhaes², Dae-Sung You³, Kwang-Nyeong Lee⁴, Son-II Pak¹ and Eutteum Kim¹

- 1. College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
- 2. UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Australia
- 3. Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- 4. Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea

Background

- Most of epidemioBetween November 2016 and March 2017, there were 123 (32.2%, among 382 cases in Korea) HPAI H5N6 cases were reported in Gyeonggi Province, Korea
- Epidemiological researches for HPAI have been focused on Southeast Asian regions.
- Purpose
- Identifying the spatial cluster, and risk factors
- Supporting policy decision

Results & Discussion

	Residuals semivariogram of multivariable logistic regression											
My Marie	NDVI, NDWI, elevation,						Non-spatial Multivariable logistic					
harm	9.0	sur	face v	vater, v	wetland	1.						
	0.5		,-6-			2.	Species (dummy, chicken(ref)					
semivariance	0.4		16			3.	Area of rice paddy					
	0.3	/	, ,			4.	Interaction between species a					
semiv	I	o/					Parameters					
	0.2						Partial sill					
0.15	0.1						Nugget					
	0.0				Practical range							
		0.00	0.05	0.10	0.15	0.20	(decimal decree)					

Ion-spatial Multivariable logistic regression include

- Poultry density
- Species (dummy, chicken(ref); duck; others;)
- Area of rice paddy
- Interaction between species and area of rice paddy

Parameters	Value
Partial sill	0.47
Nugget	0.06
Practical range	0.07
(decimal degree)	0.07

Bayesian geostatistical models

Variables	Chicken	Duck	Others
Variables -	OR (95% CrI)	OR (95% CrI)	OR (95% CrI)
Daultmydanaityd		20.31	
Poultry density		(6.54 - 136.73)	
۸ م م الم الم الم الم الم الم الم الم الم	3.41	16.02	0.55
Area of rice paddy	(1.18 - 15.20)	(1.06 - 632.70)	(0.03 - 11.77)
	0.01	0.05	0.04
Intercept	(0.00 - 0.27)	(0.01 - 4.35)	(0.00 - 3.18)

Acknowledgement

This poster presentation was supported by "Society for Veterinary Epidemiology and Preventive Medicine" (Bursary award)

Conclusion

- Control strategies can be focused on more localized regions when accounting for risk factors.
- Rice paddy was identified as spatial risk factors only for duck and chicken farms.
- Risk map and identified high risk regions in this study could be useful for supporting policy decision.