DTU Vet National Veterinary Institute

Pooling Efficiency of Different Sampling Schemes

Ahmed SSU^{1,2}, Halasa T¹, Græsbøll K¹, Toft N¹

1 Section for Epidemiology, National Veterinary Institute, Technical University of Denmark

2 Department of Epidemiology and Public Health, Sylhet Agricultural University, Bangladesh

Background

Pooling samples can reduce the number of tests required.

Results Pool size =100

However, the efficiency gain in terms of reduced number of tested samples using the different pooling schemes is unknown for different prevalence.

Objective

To evaluate the pooling efficiency of different pooling schemes for different prevalence.

Different pooling schemes

One dimensional pooling (1D)

- Pooling individual samples either column or row wise.
- Members of positive pools need retesting.

Two dimensional pooling (2D)

- Pooling individual samples both row and column wise.
- Intersection of positive row and column pools need retesting.

RP1 3,2 2,2 | RP2 3,4 RP4 3,5 2,5 RP5 CP2 CP4 CP1 CP5 CP3 Row pool Plate pool Χ.

Three dimensional pooling (3D)

- Pooling individual samples row, column and plate wise.
- Intersection of positive row, column and plate need retesting.

Shifted transversal design (STD)

Shifted transversal design(n=9; q=3; k=3) n = number of sample to be tested q = number of pool per layer k = number of layer

Conclusions

- Larger pool size maximizes pooling efficiency, at low prevalence.
- Smaller pool size maximizes pooling efficiency, at high prevalence.
- STD provides highest efficiency.

Simulation study

- Create a Boolean matrix for a range of prevalence and pool size.
- Pool samples from the matrix according to pooling schemes.
- Calculate the number of tests required for each matrix.
- Monte Carlo simulation of previous steps 10,000 times.

- Shifting samples between layers to restrict their co-occurrence in pool Layer 1 sets.
- different Intersection sets Of ascertains the positive samples.

Layer 2

Layer 3

- Averaged the number of test required and calculated pooling efficiency.
- Proportion of test require = (Total pools need testing + Individual samples need testing (true positive + ambiguous sample)/Total samples.
- Pooling efficiency = 1 (Proportion of test require).

DTU Vet

National Veterinary Institute Section for Epidemiology Technical University of Denmark

> Bülowsvej 27 1870 Frederiksberg C

Corresponding author:

Syed Sayeem Uddin Ahmed Postdoc

Phone: +45 35 88 6149 Email: sayah@vet.dtu.dk

Technical University of Denmark