

INFLUENCE OF GEOGRAPHICAL AND SWINE HERDS' FEATURES ON AUJESZKY'S DISEASE SEROPOSITIVITY IN NORTHERN ITALY

Marco Bertoletti^{1*}, Mario Chiari¹, Dominga Avisani¹, Monica P. Cerioli¹, Loris G. Alborali^{1,2}, Ana Moreno Martin^{1,2}, Antonio Lavazza^{1,2}, Marco Farioli³, Laura Gemma Brenzoni³, Mariagrazia Zanoni¹

¹ Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna; ² National Reference Laboratory for Aujeszky's disease, ³ U.O. Veterinaria, Regione Lombardia, Milano, Italy

Sample and Variables

- 4373 SWINE HERDS IN LOMBARDY REGION WERE TESTED FOR AUJESZKY'S DISEASE (AD) DURING
 4 YEARS, FROM 2011 TO 2014.
- 3 VARIABLES WERE COLLECTED FROM EACH SWINE HERD: CONSISTENCY OF THE HERD (CONS_HERD), CONSISTENCY OF THE FARM - HERDS' CLUSTER - (CONS_FARM), BOTH CONTINUOUS, AND A FACTOR VARIABLE NAMED TYPOLOGY OF SWINE HERD (TYPE)
- 5 GEOGRAPHICAL CONTINUOUS VARIABLES TAKEN INTO ACCOUNT FOR EACH SWINE HERD: DISTANCE FROM CLOSEST FARM (DIST_FARM), DISTANCE FROM CLOSEST PUBLIC ROAD (DIST_ROAD), DISTANCE FROM CLOSEST SLAUGHTERHOUSE (DIST_SLA), NUMBER OF SWINE HERDS WITHIN 3 KM (HERD_3) AND NUMBER OF HEADS WITHIN 3 KM (HEADS_3)
- NOT ALL THE SWINE HERDS WERE TESTED EVERY YEAR CONSIDERED IN THE STUDY.

WHITNEY U TEST RESULTS						
VARIABLE	Positive	NEGATIVE	P-VALUE			
DIST_FARM	693	816	<0.001			
DIST_ROAD	532	515	0.1601			
DIST_SLA	2596	2315	0.003			
Herd_3	12	9	<0.001			
HEADS_3	19438	12472	<0.001			
Cons_Herd	1953	835	<0.001			
CONS_FARM	2342	1074	<0.001			

CHI SQUARED TEST FOR TYPOLOGY OF SWINE HERDS

LEVEL OF TYPOLOGY	Positive	NEGATIVE
FINISHING-FATTENING	216	957
FATTENING WEANERS	125	232
GROWING-FINISHING	24	54
Farrow-to-feeder (F_feed)	127	215
FARROW-TO-FINISH (F_FINISH)	299	403
Farrow-to-weaner (F_Wean)	7	64
P-VALUE	<0.001	

Univariable Analysis

- THE UNIT OF THE STUDY IS THE SWINE HERD
- FOR THIS FORMER ANALYSIS, THE SWINE HERDS HAVE BEEN CONSIDERED POSITIVE WHEN THEY RESULTED POSITIVE AT LEAST IN ONE YEAR OVER THE FOUR STUDIED.
- THE AVERAGE VALUES OF THE CONTINUOUS VARIABLES ALONG THE YEARS WERE TAKEN INTO ACCOUNT IN ORDER TO HAVE ONE VALUE FOR EACH SWINE HERD
- MANN-WHITNEY TEST IS PERFORMED TO CHECK FOR THE DIFFERENCES IN THE VALUES OF CONTINUE VARIABLES BETWEEN THE GROUP OF POSITIVE AND NEGATIVE SWINE HERDS
- CHI-SQUARED TEST IS PERFORMED TO CHECK FOR THE DIFFERENCES IN THE TYPOLOGY BETWEEN POSITIVE AND NEGATIVE SWINE HERDS
- A PROBLEM OF MULTICOLLINEARITY MAY ARISE IN THE MULTIVARIABLE ANALYSIS, SINCE SOME OF THE VARIABLES MAY EXPLAIN THE SAME AMOUNT OF INFORMATION

						Iuuuiiiig	
One	MODEL PER	EACH YEA	R IS PERFO	RMED,	IN ORDER TO	D ASSESS WHAT W	ERE
THE	VARIABLES	WHICH	AFFECTED	THE	RESPONSE	(SEROPOSITIVITY	ТО
AUJE	SZKY)						

LOGISTIC REGRESSION OUTPUT:

LOGISTIC REGRESSION MODELS' RESULTS					
	COEFF.	P-VALUES			
		2011	2012	2013	2014
DIST_FARM	Positive	<0.01	<0.01	0.22	0.05
HEADS_3	NEGATIVE	<0.01	<0.01	<0.01	<0.01
CONS_HERD	ONS_HERD POSITIVE		<0.01	<0.01	<0.01
TYPOLOGY (WITH RESPECT TO FINISHING-FATTENING):					
F_FEED	Positive	0.73	0.01	0.10	<0.01
F_FINISH	POSITIVE	0.01	<0.01	0.11	<0.01
F_WEAN	NEGATIVE	<0.01	<0.01	0.03	0.61

Multivariable Modelling

- SIGNIFICANT VARIABLES: CONSISTENCY OF THE HERD, DISTANCE FROM THE CLOSEST FARM, NUMBER OF HEADS IN A 3KM RADIUS, TYPE OF SWINE HERD
- NOT SIGNIFICANT VARIABLES: DISTANCE FROM THE CLOSEST STREET, CONSISTENCY OF THE FARM, NUMBER OF SWINE HERDS WITHIN 3 KM, DISTANCE FROM THE CLOSEST SLAUGHTERHOUSE.
- CONSISTENT RESULTS IN SIGNIFICATIVITY DURING 4 YEAR-MODELS ARE REACHED
- Roc curve is used to compare Predictive probability of seropositivity from the model for each swine herd and positivity as computed in the univariable analysis.

Results

- SIGNIFICANT FACTORS ARE CONSTANT DURING YEARS
- DISTANCE FROM PIG FARMS, CONSISTENCY, FARROW-TO-FEEDER AND FARROW-TO-FINISH ARE RISK FACTORS
- NUMBER OF HEADS AND FARROW-TO-WEANER ARE PROTECTIVE FACTORS.
- SWINE HERDS WITH A PREDICTIVE PROBABILITY FROM THE MODEL GREATER THAN 0.329 ARE CONSIDERED POSITIVE.
- AUC IS EQUAL TO 0.718: THE MODEL HAS AN ACCEPTABLE ABILITY TO PREDICT

Conclusions

• A LIST OF SIGNIFICANT VARIABLES, BOTH GEOGRAPHICAL AND FROM HERD'S FEATURES, HAVE BEEN

FOUND IN ORDER TO EXPLAIN AUJESZKY'S DISEASE SEROPOSITIVITY IN SWINE HERDS.

SPECIAL THANKS TO THE COLLEAGUES FROM S.E.L.

