Risk factors associated with the A2C resistance pattern among E.coli isolates from broiler flocks in Canada Public Health Agency of Canada UNIVERSITY OF

N. Caffrey^a, O. Nekouei^a, S. Gow^b, A. Agunos^c, S.L. Checkley^a

^aDept. Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada ^bPublic Health Agency of Canada, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada ^cPublic Health Agency of Canada, 160 Research Lane, Suite 103, Guelph, Ontario, N1G 5B2, Canada

BACKGROUND

CALGARY

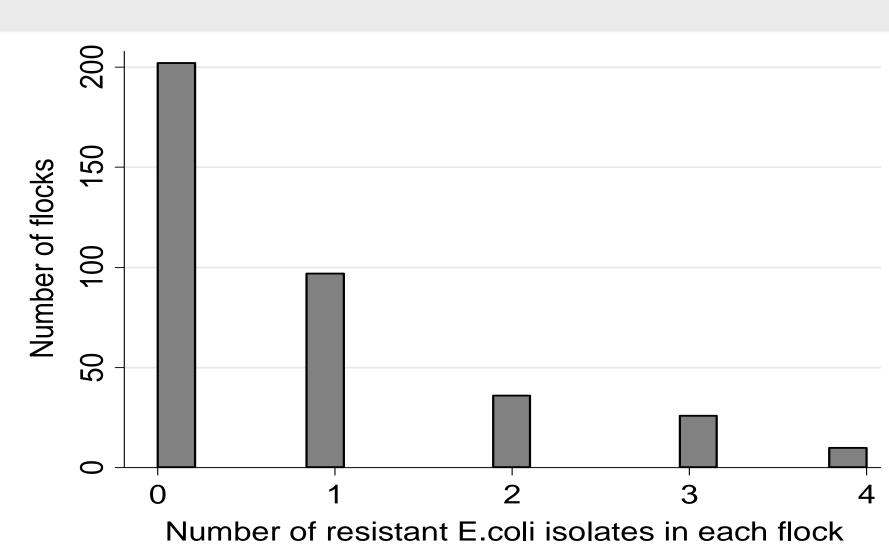
- Antimicrobial resistance (AMR) is a serious \bullet threat to global public health¹.
- Antimicrobial use (AMU) for treatment of disease, and growth promotion is common in broiler production².

STATISTICAL ANALYSIS

Descriptive statistics evaluated at bird level, flock level, farm level and hatchery level.

Table 1: Results for the mixed-effects Poisson model evaluating the prevalence of resistant E.coli isolates to three specific β -lactam antimicrobials (ceftiofur, cefoxitin, amoxicillin-clavulanic acid) from 371 broiler flocks in

RESULTS


AMU can lead to the development and enrichment of resistant bacteria that can be spread to humans through the food chain².

Simultaneous resistance to: Amoxicillin –clavulanic acid Cefoxitin	A2C resistance pattern
Ceftiofur	pattern

The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS)

- CIPARS tracks selected bacteria that reside in the intestinal tract of people and animals in order to understand trends in antimicrobial use and resistance³.
- CIPARS conducts AMR surveillance of *E.coli* in chickens at farm, slaughter and in retail⁴.

- 1,478 *E.coli* isolates recovered from 371 flocks from four regions of Canada.
- A2C resistant *E.coli* isolates recovered from 64 flocks.

Figure 1: Frequency distribution of the number of E.coli isolates resistant to three specific β -lactam antimicrobials (ceftiofur, cefoxitin, amoxicillin-clavulanic acid) from 371 broiler flocks in four regions of Canada.

Mixed-effects Poisson regression model with random effects of the hatcheries.

Fixed effects ^a	PR ^b	SE	95% CI	P
Use of ceftiofur	1.82	0.28	1.35, 2.46	0.0
(Injected at hatchery ^c)				
Use of avilamycin	0.64	0.14	0.42, 0.98	0.0
(in feed)				
Pest control program	0.61	0.09	0.46, 0.81	0.0
for wild birds				
Presence of horses on	1.73	0.33	1.19, 2.51	0.0
the farm				
Treatment of water	1.53	0.24	1.12, 2.08	0.0
with hydrogen peroxide				
during production cycle				
Storage of manure	0.66	0.09	0.50, 0.87	0.0

- Ceftiofur (TIO) was used *in ovo* for the prevention of *E.coli* associated omphalitis prior to 2014^5 .
- Use of ceftiofur lead to increased AMR in Salmonella and E.coli isolates in broilers and humans⁶.
- There is a potential for cross resistance with drugs of importance in human medicine⁷.
- The use of ceftiofur in the Canadian poultry industry has been phased out.

OBJECTIVES

To investigate the potential effects of AMU and farm management factors on the AMR to a specific group of β-lactam antibiotics in *E.coli* isolates recovered from the CIPARS broiler surveillance program.

Outcome

The prevalence of A2C resistant *E.coli*

in each flock

RESULTS

- Use of TIO = Prevalence Ratio (PR) of 1.82 (95% CI: 1.35 – 2.46)
 - Use of avilamycin in feed = PR of 0.64(95% CI: 0.42 – 0.98)
- Use of a pest control program for controlling wild birds = PR of 0.61 (95% CI: 0.46 - 0.81)
 - Storage of manure on the farm = PR of 0.66 (95% CI: 0.50 – 0.87)

on the farm

Constant

0.22 0.04 0.15, 0.32 0.0001

^{*a}All predictors are dichotomous*</sup>

^bThe Prevalence Ratio for each variable was the expected prevalence at one level of that variable divided by the expected prevalence at the corresponding reference level. ^cIn ovo or subcutaneously with Marek's Disease Vaccine

CONCLUSIONS

- This study identified a number of important management factors that influence the prevalence of A2C-REI.
- Use of ceftiofur was associated with an increased prevalence of A2C-REI.
- Provide a national baseline from which to ${\color{black}\bullet}$ monitor the effects of the removal of ceftiofur from poultry production in Canada.

REFERENCES

• Having horses present on the farm = PR of 1.73(95% CI: 1.19 – 2.51)

METHODS

CIPARS Broiler Surveillance Program:

- Questionnaires used to collect data on farm level management factors:
 - farm demographics
 - animal health
 - antimicrobial exposure
- Antimicrobial susceptibility testing of generic *E.coli* using Clinical and Laboratory Standards Institute breakpoints.
- Laboratory data on AMR, survey data on AMU, and farm–level management factors merged for analysis.

- Use of hydrogen peroxide to treat water lines during the production cycle = PR of 1.53(95% CI: 1.12 – 2.08)
- Random effect variance at the hatchery level was 0.32, (95% CI: 0.12 – 0.85)

ACKNOWLEDGEMENTS

Funding provided by Alberta Agriculture and Forestry Data provided by the Public Health Agency of Canada

¹WHO, 2016. WHO | Antimicrobial resistance. WHO. World Health

Organization. Available at: http://www.who.int/mediacentre/factsheets/fs194/en/ ²Mainali, C., McFall, M., King, R., Irwin, R., 2013. Evaluation of Antimicrobial Resistance Profiles of Escherichia coli Isolates of Broiler Chickens at Slaughter in Alberta, Canada. Journal of Food Protection 76, 2045-2051.

³Government of Canada, 2007. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). Public Health Agency of Canada, Ottawa, ON.

⁴Government of Canada, 2016a. Canadian Antimicrobial Resistance Surveillance System Report, 2016.

⁵ Government of Canada, 2016b. Reductions in Antimicrobial Use and Resistance: Preliminary Evidence of the Effect of the Canadian Chicken Industry's Elimination of Use of Antimicrobials of Very High Importance to Human Medicine. Government of Canada, 1-5.

⁶Dutil, L., Irwin, R., Finley, R., Ng, L.K., Avery, B., Boerlin, P., Bourgault, A.M., Cole, L., Daignault, D., Desruisseau, A., Demczuk, W., Hoang, L., Horsman, G.B., Ismail, J., Jamieson, F., Maki, A., Pacagnella, A., Pillai, D.R., 2010. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg Infect Dis 16, 48-54. ⁷Dunne, E.F., Fey, P.D., Kludt, P., et al., 2000. Emergence of domestically acquired ceftriaxone-resistant salmonella infections associated with ampc β lactamase. JAMA 284, 3151-3156.