# Data-driven stochastic modelling of Salmonella Dublin infection in dairy herds

#### Arianna Comin, Stefan Widgren, Estelle Ågren, Ann Lindberg

Department of Disease Control and Epemiology, Swedish National Veterinary Institute (SVA)

Calves

environmental

infectious

pressure

Youngs

Adults

# AIM

To build a within- and between-herd transmission model of *S. Dublin* infection in dairy herds to further evaluate potential suveillance strategies

## Μοτινατιον

- Around 1% of Swedish dairy herds are infected with S. Dublin
- Surveillance and control measures have been in place since 1960s
- Fewer cases were detected over the years → eradication of S. Dublin may be possible, but it requires a more sensitive surveillance strategy



WITHIN-HERD INFECTION DYNAMICS



R

Calves

- Stochastic compartmental model based on the Gillespie algorithm (R package siminf<sup>[1]</sup>)
- Susceptible Infected Carrier Recovered
- Age-specific parameters
- Infection probability depending on the environmental infectious pressure

#### **BETWEEN-HERD INFECTION DYNAMICS**

- Animals moved between herds according to the Swedish cattle movement registry data
- Same data to determine ageing events, introductions and exits in each herd



#### DATA

- All cattle movements recorded in Sweden in Jul 2005 – Dec 2013
- 37 000 cattle herds (8400 dairy)

# $\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

# RESULTS

Median within-herd prevalence was 9% for calves, 3.5% for young stock and 2.5% for adults (FIG. 1)



- 1.6 million cattle (900 000 dairy)
- 10.8 million events
  - birth, purchase, death, sale, slaughter, ageing

# **INITIALIZATION**

- 3 age groups
  - calves: < 6 months</p>
  - ► young stock: 6 30 months
  - ► adults: > 30 months
- Starting point: 420 (5%) randomly selected infected dairy herds, preferentially located in the highprevalence region.

- Within-herd prevalence fluctuated around the year (seasonality) but had the same pattern between years
- Seasonality was modelled as different rate of bacterial decay per season → direct (negative) correlation with environmental infectious pressure
- Between-herd prevalence stabilized to around 1% after few years (FIG. 2)
- Results are censored because the model depends on real movement data
   Sensitive to starting values



## DISCUSSION

Within-herd infection dynamics are driven by the parameters in the model, while

between-herd infection dynamics mainly depend on the data

- The model mimics the spread of S. Dublin between Swedish dairy cattle herds
  → influenced by specific herd sizes and pattern of animal movements
- Animal movements include also the control measures applied during the 6 years for any cattle disease → restricted herds = ban of movements
- The model can be useful for evaluating surveillance strategies specific for the disease situation in Sweden

[1] Bauer P, Engblom S, Widgren S – Fast event-based epidemiological simulations on national scales. <u>http://arxiv.org/abs/1502.02908</u> (submitted manuscript)



Arianna Comin Department of Disease Control and Epidemiology Epidemiologist, DVM PhD NATIONAL VETERINARY INSTITUTE **post.** SE-751 89 Uppsala, Sweden **phone.** +46 18 67 40 00 **fax.** +46 18 30 91 62 **e-mail.** arianna.comin@sva.se **web.** www.sva.se **FIG 2.** Between-herd prevalence. Proportion of infected dairy herds (i.e. including at least one infectious animal).