Synchronisation of *E. coli* O157 shedding *Charles Sturt* University

in an Australian grass-fed beef herd

G Lammers^{1,2}, C McConnel³, D Jordan⁴, S Morris⁴, M Ward⁵ and J Heller^{1,2}

¹Charles Sturt University, Australia, ²Graham Centre for Agricultural Innovation, Australia, ³Colorado State University, USA, ⁴New South Wales Department of Primary Industries, Australia, ⁵The University of Sydney, Australia.

Introduction

Escherichia coli O157 is an important foodborne pathogen capable of causing serious illness in humans.

Healthy cattle transiently shed *E. coli* O157 and directly or indirectly transmit the pathogen to humans¹. The objective of this study was to describe the temporal dynamics of *E. coli* O157 shedding in an Australian grass-fed beef herd, and to identify possible risk factors for shedding of this pathogen.

Methods

- 23 beef cows were sampled twice a week for 9 months
- Faeces were collected from each cow by rectal palpation
- Direct plating and immuno-magnetic separation (IMS) was used to categorise animals into negative (non-shedding) and positive (shedding) on each occasion
- Numerous animal, climate and environmental variables were measured

Results

- Overall prevalence of *E. coli* O157 shedding within the cohort during the study was 12.8%
- Much variation of shedding between and within individuals was identified
- Three distinctive peaks in probability of shedding were detected (Figure 1)
- Hide contamination (P=0.04) and rainfall in the 24 hours prior to sampling (P = 0.03) were associated with the probability of *E. coli* O157 shedding. The average level of hide contamination score (from 1 to 5: clean and dry slightly dirty dirty very dirty filthy and wet) during shedding (1.4) differed from non-shedding (1.7). The mean of rainfall (mm in the 24 hours prior to sampling) during shedding events (3.4) differed from non-shedding events (0.6).

Analysis

The probability of shedding over time was visualised to differentiate between shedding and non-shedding events of the whole the herd. An ANOVA and GLM were used to identify which variables were associated with shedding events.

Conclusion

This study demonstrated temporal clustering in shedding: members of the herd were synchronised in their pattern of shedding of *E. coli* O157. No literature has identified this previously. Occurrence of rainfall was a predictor of shedding in this herd grazing in a medium rainfall environment.

Figure 1. Temporal change in probability of animals shedding *E. coli* O157 (and 95% CI). The timing of management variables, the timing of movement of the animals between paddocks and the amount of rainfall in the 24 hours prior to sampling are shown.

References

¹Rangel JM et al., 2005. Epidemiology of *Escherichia coli* O157:H7 outbreaks, United States, 1982 – 2002. Emerg Infect Dis 11:603-609.

Acknowledgements

This project is funded by Meat and Livestock Australia (MLA) (A.MFS.0247). We would like to thank Michelle Ayton for her contribution to this project.

Future research

The next step is to focus on daily, individual animal variation to obtain a more complete overview of the shedding pattern of *E. coli* O157 in grass-fed beef cattle.

