

Uptake of a diagnostic blood test for sheep scab:

THE QUEEN'S ANNIVERSARY PRIZE FOR HIGHER AND FURTHER EDUCATION 2013

Collette McCarron^{1,2}, Rodney Beard^{1,2}, Richard Reeve^{1,2}, Ruth Zadoks^{1,2,3}, Al Nisbet², Matt Denwood^{2,4}, Louise Matthews^{1,2}

¹Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, ²Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, ³Moredun Research Institute, Edinburgh, ⁴University of Copenhagen

Background: the need for a blood test

Sheep scab is a serious and economically important disease that is emerging in the UK

Will farmers adopt the test?

- We assume a farmer will weigh the benefits of testing and early treatment against the cost of unnecessarily paying to test an uninfected flock. We also assume a farmer's assessment of whether his flock might be infected and need testing will depend on his neighbour's decisions and infection state.
- Currently, treatment is based on clinical signs and subsequent diagnosis via skin scrapings.
- A promising alternative is a diagnostic blood test developed by Moredun which can reliably detect *P. ovis* on sheep even before clinical signs of disease are evident.
- Game theory is designed to capture these strategic interactions between individuals in their decision making process.
- Here, we use a stochastic game which allows farmer to move between high, medium and low risk states depending on their infection status and actions.

A stochastic game for sheep scab test adoption

- Our baseline economic and epidemiological data define a stochastic game (example below) with high, medium and low risk states.
- The payoffs for each combination of decisions are shown above the diagonal (with the payoff for farmer 1 first, and the payoff for farmer 2 second).
- The probabilities of moving between states (shown below the diagonal) assume that farms
 - move to the high risk state if either farm had clinical infection last year
 - move to the medium risk state if subclinical infection was detected using the new test

 move to the low risk state if both farms were uninfected.

Model outputs and interpretation

Prevalence under different test adoption scenarios

B

Prevalence	0.10	4444	44444444	14444444	44444444	4444444	14444	
	0.05	22222	222222222 1111111111	33333333 22222 111111111	3333 333333 222 11111111111	33333333	3333	
	0.00	1: Ad 2: Ad 3: Ad 4: No	1: Adoption in all states 2: Adoption in high and medium risk states 3: Adoption in high risk state 4: No adoption					
		0.0	0.2	0.4	0.6	0.8	1.0	

Key observations

- Test adoption depends on whether farmers take a short or long term view of their investments.
- For expected current expected costs of the new blood test we expect test adoption in the high risk state but not necessarily in the medium risk.
- Under this adoption scenario, we would expect to see a **reduction in prevalence of infected farms of** just over 50%.
- The solution does not always match the Patero optimum which would be the best solution for all if farmers chose to cooperate.
- Also, there may be multiple solutions. This is important as solutions are not equally profitable; therefore, strategic decision making may result in non-adoption, when adoption would be better.
- These results provide support for herd health schemes which encourage and facilitate cooperation between farmers.