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We report a novel effective network approach to infer possible spreading paths of the African Swine Fever (ASF) in Poland. The 
vertices (nodes) of the network represent counties (powiats). We consider several possible layers of transmission: wild boar, pig-
related and possibly human-related. We present results for two-layer model and provide the corresponding risk assessment for 
every county in Poland. Our approach provides a possible way to incorporate the long range jump events of ASF-epidemics in 
contrast to only local spread attributed to wild boars.

Covariates used for effective transmission network reconstruction in 
Poland. (a) Distribution of forest used as a proxy of wild boar density. (b) 
Distribution of domestic pig density.

(a) Simulated (human) epidemics in USA originating in Los Angeles. Color 
code reflects the fraction of infected: from blue (no infecteds) to yellow (many 
infecteds). (b) Underlying mobility network (minimum spanning tree) as 
revealed by the analysis of dollar bill trajectories (http://wheresgeorge.com/) 
[1][2].

(a) Every point represents an outbreak (both in wild boar and domestic 
pig) reported to OIE (until Sep 2018) (b) Maximal distance from the 
“source” (the very first outbreak) up to the time t giving effective speed of 
200 m per day.
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Pearson correlation coefficient (a) between the effective distance and the 
arrival time and the corresponding p-value (b) in dependence on the wild boar 
weighting factor 𝛾.

Conclusion

[29]. Such a law  of  movements is similar to the gravity model. Gravity models are reminiscent of 
Newton’s law  of gravitation and have been used for a long time in economics and social sciences 
to model flows of goods or individuals between different inhomogeneously populated locations [6]. 
The model could also be considered as a generalization of the concept of  topological 
superdiffusion [44] [45] [46]. The analysis unveiled a striking difference in the behavior of ordinary 
diffusion and Lévy flights in the presence of inhomogeneities (Figure 1(B)). In the case of ordinary 
diffusion only attenuation of  the process can be achieved. Remarkably, in the case of 
superdiffusion, dependent on the relative source and target impact, not only attenuation, but also 
acceleration of  the process is possible. This stands in contrast to common belief that disorder 
usually attenuates diffusive processes. Maximal acceleration is achieved when transition rate 
depends exclusively on the properties of target location. Our results state that if a superdiffusive 
walker aims to achieve the fastest dispersion, it needs to move with only target-dependent 
transition rates. This result is universal and independent of  the particular kind of inhomogeneity 
since we have analytically and numerically demonstrated that for different periodic and random 
environments. Empirical calibration of the gravity model supports this finding as well [47].  
Furthermore, in the context of random search strategies [14] our findings imply that the optimal 
Lévy exponent, in general, depends on the source and target impact.   For application of these 
results to epidemiological problems our model is easily extendable to the case of reaction-
superdiffusion processes in the presence of  quenched disorder.   Validation of  the gravity model in 
the presence of long range mobility is one of  the current topics of investigation in the group of Prof. 
González as well. In particular an interesting question concerns a scale of  applicability of gravity 
models or the existence of an appropriate metric for its validity.

C) Epidemics due to bidirectional movements

Looking for adequate models of human-mediated spread reflecting recent empirical results 
[9] [8] I studied the impact of  recurrent or bidirectional host movements on the spatial spread of 
infectious diseases [31] [32]. I built a general model for epidemic spread mediated by agents 
moving with origin-dependent transition rates. In contrast to indistinguishable agents of the 
reaction-diffusion model, we distinguish our individuals according to their origin or home place. I 
considered the special case of  bidirectional movements to the next-neighbor locations on 
overlapping star-like topologies. I compared the widely used models of epidemic spread, such as 
reaction-diffusion and effective force of  infection or direct coupling approaches with the 
bidirectional model and found striking differences as well similarities between them depending on 
parameters of the system under consideration.

 First I considered an epidemic on a one dimensional lattice of locations populated 
homogeneously. I derived the corresponding continuum equations. They are structurally different 
from both the reaction-diffusion counterpart [48] [49] and the continuum version of  the direct 
coupling model [50] [51]. Direct coupling is a special case of bidirectional model if travel rates are 
very high, number of  travelers is low  and clear scale separation of  infection and travel is possible. I 
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Figure 3. Comparison of the evolution of the model SIR epidemic in USA started in Los-Angeles in 

bidirectional (A) and reaction-diffusion (B) frameworks. Snapshot of the number of infecteds after 

approximately 4 weeks. Colocode: from high (red) to low (blue) Underlying mobility network is a minimal 

spanning tree of the weighted transportation network revealed by the dollar bill tracking [8] used. We 

observe a pronounced attenuation of the epidemic spread as predicted analytically for a lattice [32] .

(A) (B)(a) (b)

(B) (C)(A)(a) (b)

ASF spread map in Poland

Effective transmission network

Newto

3 Balancing between start and destination: superdiffusion and gravity model

Figure 3.1: Random walk processes in inhomogeneous salience fields s(x) in two (a) and one (b)

dimension. Source and target locations of a single jump are denoted by y and x, respectively.

The central parameter in our analysis is the weight parameter 0 ⌥ c ⌥ 1, which quantifies

the relative impact of source and target salience on the dynamics. When c = 1, a transition

y � x only depends on the salience at the target site and is independent of the salience at

the source. When c = 0, the salience of the target site has no influence on the transition, and

the rate is decreased with increasing salience at the source. The intermediate case c = 1/2, is

equivalent to the topological superdiffusion approach (Brockmann and Sokolov, 2002) with a

salience given by a Boltzmann factor s(x) = e
�⇥v(x) in a potential v(x) .

In combination with the transition rate (3.1), the master equation (3.2) is equivalent to the

fractional Fokker-Planck equation (FFPE)

⌧tp = D s
c⇥µ/2
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c
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where p = p(x, t), s = s(x) and D is a generalized diffusion coefficient. The fractional

Laplacian is defined by
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with Cµ = 2µ
�
�d/2�((µ + d)/2)/�(�µ/2). In Fourier space, ⇥µ/2 corresponds to multi-

plication by �|k|µ: F{⇥µ/2
f}(k) = �|k|µF{f}(k). In what follows, we will restrict our

analysis only to a one-dimensional case, although generalizations to further dimensions are

straightforward. Note that in the case of ordinary diffusion Equation (3.3), reduces to the

usual Fokker-Planck equation
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⌦
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where F (x) = �c⇥
dv
dxD(x) and D(x) = 2 exp[�⇥(2c� 1)v(x)].

The fractional Fokker-Planck equation (3.3) reduces to a number of known stochastic pro-

cesses for specific choices of the parameters c and µ. For instance, when s(x) = const (3.3)
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Effective spreading distance dij and probability of invasion Pij on a 
weighted network as defined in Ref. [4].
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Given landscape of covariates m(x) one can construct an effective 
transmission network (with transmission probabilities ωij from location j to 
location i) using a pseudo gravity ansatz [3], where Fi and Pi  are forest 
and domestic pig density correspondingly. 

(a) Map of first arrival times for ASF (in weeks). The counties are colored 
according to the time of first ASF-event. The hypothesis is that the effective 
distance is correlated with the arrival times and could thus serve as a 
future risk predictor for ASF appearance in a given county. In (b) the 
distribution of effective distance for all Polish counties is shown.
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Effective distance vs. arrival time

Arrival times

Motivated by recent advances in the modeling of spreading processes on 
networks [4] we applied the effective distance ansatz to the effective 
spreading network constructed from the covariate landscape based on the 
pseudo-gravitational law [3]. The model could be used to make risk 
assessment for ASF introduction into other countries as well as to develop 
more sophisticated machine learning [5] predictive approaches to ASF 
spread.
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