Complex responses to movement based control: when moving cattle helps Jamie Prentice^{1,2}, Glenn Marion³, Michael R Hutchings⁴, Tom McNeilly⁵, **Louise Matthews**^{1,2} ¹Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, ²Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, ³BioSS, Edinburgh, ⁴SRUC, Edinburgh, ⁵Moredun Research Institute, Edinburgh, #### Background: movement based control 0.5 Livestock disease is often spread between herds by movement of infected animals Interventions include quarantine, testing all animals in transit, and restricting cattle movement R_0 is often used when examining disease spread, but it says little about between-group transmissions ... p = 0.40 p = 0.20 p = 0.00 ... in this case household models have been used to calculate a threshold R_* , but usually consider disease spread by **contact** rather than **movement**, which we show makes an important difference #### How disease spreads between groups **Next Generation Matrix**¹ techniques, used to calculate R_0 are extended to derive an expression for R_* $$\kappa NP_{pos}T_{in}$$ - where κ is the per capita movement rate, N is the herd size, P_{pos} is the average prevalence during the expected time $T_{\rm inf}$ until the herd recovers from the disease - We use models to explore the behaviour of R_* , how it is affected by **disease** intervention, heterogeneity, and how it determines the expected between-herd **prevalence**. We consider R_* in a variety of important and real but characteristically different diseases: Map (Johne's disease), E.coli O157, Bovine Herpes Virus (BHV), and Bovine Viral Diarrhoea Virus (BVDV). #### How R* behaves: thresholds and control - R_* is 0 when there is no movement. When movement is high, $R_* \rightarrow 1$, as the primary infective becomes increasingly likely to move before it recovers, dies, or creates any secondary infectives - The disease can persist only if $R_* > 1$, but a high R_* does not imply a high between-herd prevalence (see **B**, purple curve) - If intervention successfully prevents a proportion *p* of infectives from arriving at another group, then R_* is reduced by a factor 1-p. - R_* is maximised for intermediate movement rate (see **A**) ... - ... therefore disease is hardest to control at intermediate movement rates - p must be $\geq 1-1/R_*$ to prevent disease persistence (c.f. R_0 and minimum vaccination coverage) - Faster diseases have maximum R_{*} at higher movement rates than slower diseases with the same R_0 (see **C**) - Higher R_0 leads to higher R_* , but has little effect on where it is hardest to control (see **D**) ### Application to important livestock diseases, and the role of supershedders BVDV would be harder to control with higher movement rates Movement rate, k - Map is harder to control at lower movement rates because it persists within the herd for such a long time (movement based control is not a feasible way to handle Map) - BHV and *Ecoli* both have low R_* , and should respond well to movement based disease control. - *E.coli* O157 is characterised by heterogeneous shedding, with regular shedders and super shedders - This gives rise to the 80-20 rule: 80% of the infection is caused by 20% of the infectives (see **F**, green curve) - Varying the regular to supershedder ratio, but keeping R_0 fixed shows that heterogeneity in disease transmission reduces R_{*} (see F) ## Key observations - R_{*} is a useful metric for predicting the level of disease intervention needed to prevent disease persistence - Transmission heterogeneity plays an important role in persistence - R_{*} is maximised by different movement rates for different diseases, and therefore **hardest** to control at different movement rates. - If reducing cattle movements were used to help to reduce BVDV transmission, it could inadvertently make Map considerably more difficult to control. ¹Diekmann, O., Heesterbeek, J. & Roberts, M. (2010). The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7: 873—885. SVEPM 2015 Ghent jamie.prentice@glasgow.ac.uk