

Complex responses to movement based control: when moving cattle helps

Jamie Prentice^{1,2}, Glenn Marion³, Michael R Hutchings⁴, Tom McNeilly⁵, **Louise Matthews**^{1,2}

¹Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, ²Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, ³BioSS, Edinburgh, ⁴SRUC, Edinburgh, ⁵Moredun Research Institute, Edinburgh,

Background: movement based control

0.5

Livestock disease is often spread between herds by movement of infected animals Interventions include quarantine, testing all animals in transit, and restricting cattle movement

 R_0 is often used when examining disease spread, but it says little about between-group transmissions ...

p = 0.40

p = 0.20

p = 0.00

... in this case household models have been used to calculate a threshold R_* , but usually consider disease spread by **contact** rather than **movement**, which we show makes an important difference

How disease spreads between groups

Next Generation Matrix¹ techniques, used to calculate R_0 are extended to derive an expression for R_*

$$\kappa NP_{pos}T_{in}$$

- where κ is the per capita movement rate, N is the herd size, P_{pos} is the average prevalence during the expected time $T_{\rm inf}$ until the herd recovers from the disease
- We use models to explore the behaviour of R_* , how it is affected by **disease** intervention, heterogeneity, and how it determines the expected between-herd **prevalence**. We consider R_* in a variety of important and real but characteristically different diseases: Map (Johne's disease), E.coli O157, Bovine Herpes Virus (BHV), and Bovine Viral Diarrhoea Virus (BVDV).

How R* behaves: thresholds and control

- R_* is 0 when there is no movement. When movement is high, $R_* \rightarrow 1$, as the primary infective becomes increasingly likely to move before it recovers, dies, or creates any secondary infectives
- The disease can persist only if $R_* > 1$, but a high R_* does not imply a high between-herd prevalence (see **B**, purple curve)
- If intervention successfully prevents a proportion *p* of infectives from arriving at another group, then R_* is reduced by a factor 1-p.
- R_* is maximised for intermediate movement rate (see **A**) ...
- ... therefore disease is hardest to control at intermediate movement rates
- p must be $\geq 1-1/R_*$ to prevent disease persistence (c.f. R_0 and minimum vaccination coverage)

- Faster diseases have maximum R_{*} at higher movement rates than slower diseases with the same R_0 (see **C**)
- Higher R_0 leads to higher R_* , but has little effect on where it is hardest to control (see **D**)

Application to important livestock diseases, and the role of supershedders

BVDV would be harder to control with higher movement rates

Movement rate, k

- Map is harder to control at lower movement rates because it persists within the herd for such a long time (movement based control is not a feasible way to handle Map)
- BHV and *Ecoli* both have low R_* , and should respond well to movement based disease control.

- *E.coli* O157 is characterised by heterogeneous shedding, with regular shedders and super shedders
- This gives rise to the 80-20 rule: 80% of the infection is caused by 20% of the infectives (see **F**, green curve)
- Varying the regular to supershedder ratio, but keeping R_0 fixed shows that heterogeneity in disease transmission reduces R_{*} (see F)

Key observations

- R_{*} is a useful metric for predicting the level of disease intervention needed to prevent disease persistence
- Transmission heterogeneity plays an important role in persistence
- R_{*} is maximised by different movement rates for different diseases, and therefore **hardest** to control at different movement rates.
- If reducing cattle movements were used to help to reduce BVDV transmission, it could inadvertently make Map considerably more difficult to control.

¹Diekmann, O., Heesterbeek, J. & Roberts, M. (2010). The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7: 873—885.

SVEPM 2015 Ghent jamie.prentice@glasgow.ac.uk