

Modelling the spread of resistance to anthelmintic drugs in sheep nematodes

Jamie Prentice^{1,2}, Roz Laing^{1,2}, Barbara Mable^{1,2}, Collette Britton^{1,2}, Eileen Devaney^{1,2}, Louise Matthews^{1,2}

¹Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow ²Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow

Background

- Helminth infections (e.g. *Haemonchus contortus* or *Telgadorsagia circumcincta*) are widespread problem for livestock
- Anthelmintic drugs such as Ivermectin and Levamisole exist, but there is a growing
 problem of anthelmintic resistance (AHR), which complicates disease control, and the
 mechanisms of resistance are poorly understood

Model assumptions

- Worms live in the hosts, a flock of *n* sheep, and produce eggs via sexual reproduction
- Eggs are excreted onto pasture, and hatch into larvae
- Larvae are consumed by (and in the process re-infect) the sheep
- A drug is administered for 3 months a year, which is assumed to kill larvae at the point

- Some resistance traits appear recessive, while others are dominant
- We wish to better understand how resistance genes spread throughout a population, but most models to date have assumed only a single locus and recessive resistance, which may fail to capture the correct transmission dynamics
- We explore the effects of both the number of loci associated with resistance, and the effects of dominance

Alleles, genotypes, and fitness

- All possible genotypes are identified and labelled with a unique number, so the numbers
 of each genotype can be tracked within the population
 - Example, for two loci each with two alleles, this would be $A_{11}B_{11}$, $A_{11}B_{12}$, $A_{11}B_{22}$, $A_{12}B_{11}$, $A_{12}B_{12}$, $A_{12}B_{22}$, $A_{22}B_{11}$, $A_{22}B_{12}$, $A_{22}B_{22}$, (3×3 = 9 genotypes), labelled 1-9
- Each allele *a* has fitness values f_a^- and f_a^+ , which are the fitnesses of the allele in the presence (+) and absence (-) of an anthelmintic drug
 - Fitnesses of alleles in different loci are additive (and scaled by the number of loci, to ensure a maximum possible fitness of 1)
- Each genotype g has fitness values f_g^- and f_g^+
- Alleles with a lower number are dominant to alleles with a higher number at the same locus, so a genotype $A_{12}B_{12}$ has fitnesses $f_{A_{12}B_{12}}^- = f_{A_1}^- + f_{B_1}^-$ and $f_{A_{11}B_{22}}^+ = f_{A_1}^+ + f_{B_2}^+$

- of infection
- The model tracks the number of worms and larvae with each genotype in each sheep, and the number of eggs with each type
- The change in allele frequencies over time is recorded

Impact of number of loci and dominant vs recessive alleles

- Treatment is administered for 3 months out of the year (solid lines), and compared with no treatment (dashed lines)
- To clearly expose the dynamics, we examine an extreme scenario where resistant alleles are only 80% as fit as the wildtype
- In the absence of treatment, the fitnesses of wildtype alleles w and resistant alleles r are $f_w^- = 1.0/L$ and $f_r^- = 0.8/L$ (dividing by the number of loci L)
- In the presence of treatment, the fitnesses of wildtype alleles w and resistant alleles r are $f_w^+ = 0.1/L$ and $f_r^+ = 0.8/L$ (i.e. no loss of fitness for the resistant alleles)

Key observations

- Dominant alleles may fail to reach the same fixation as resistant alleles
- Resistance spreads more quickly when resistance is a single locus trait, and more slowly when it is a multilocus trait

Acknowledgements

- Funded as part of the BBSRC / BUG consortium. Building Upon the Genome
- Grant number BB/M003949/1

SVEPM 2018 Tallinn

