Prevalence of Border Disease virus in Basque dairy-sheep estimated by bulk-milk analysis

E. Berriatua¹, JF. Barandika, G. Aduriz, A. Hurtado, L. Estévez, R. Atxaerandio, AL. García-Pérez² NEIKER- Instituto Vasco de I+D Agrario, Sanidad Animal, Berreaga 1, 48160 Derio (Bizkaia), Spain

(¹present address: Murcia Veterinary School: berriatu@um.es ²Ana García for correspondence: agarcia@neiker.net)

Name: Eduardo Berriatua

INTRODUCTION

- Border disease virus (BDV) is the sheep pestivirus that can also infect cattle and pigs and be a major cause of reproductive failure and immunosupression.
- Pestivirus can be eradicated from large areas by implementing systematic non-vaccination control schemes based on identifying and eliminating persistently infected animals (PIs).
- Pls were infected in-utero, are immunotolerant, constantly eliminate virus and infect other in-contact animals which in contrast, overcome infection and develop antibodies.
- Bulk-tank milk (BTM) antibody analysis has been used in dairy-cattle herds as an initial screening test to identify infected herds however no similar studies have been done in dairy-sheep flocks and BDV prevalence remains by enlarge unknown.

MATERIAL & METHODS

Study design and population

Most flocks were at the start
of the milking period when only
50% of sheep (and mostly ≥2nd
lactation ewes) were being
milked (Table 1).

• Bulk-tank milk (BTM) samples from all 154 Latxa dairy sheep flocks in the 3 Basque provinces (see Map) registered with the regional milk board, for BDV diagnosis and somatic cell count (SCC).

Table 1. Study population

rable franca, popularion							
Province	No. of	No. of	No. of	Median			
	flocks	ewes >1	ewes	SCC			
		yr-old	in milking	$(x10^3)$			
Araba	53	21986	11695	461			
Gipuzkoa	57	21097	10549	473			
Bizkaia	44	10767	4002	550			
All	154	53850	26246	473			

Competitive-ELISA (Inst. Pourquier) analysis

- Samples deemed antibody-positive when antibody inhibition percentage (AIP) <80%
- Flock-seroprevalence estimated from AIP values: (kit's guidelines for bovine BTM)

 AIP≥80%, 46-79% and ≤45% corresponded to <10%, 10-30% and >30% seroprevalence.

RT-PCR and sequence analysis

- RT-PCR for 5'NCR sequences on somatic cells RNA from all samples.
- 7 agarose-purified amplicons sequenced and compared with GenBank sequences.
- Phylogenetic trees with similar aligned sequences using neighbor-joining and maximum parsimony and bootstrap analysis for stability assessment.

RESULTS

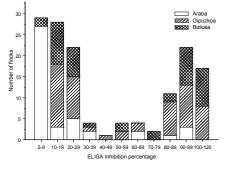


Fig. 1. Frequency of the ELISA AIP by province

Fig. 2. Neighbor-joining phylogenetic tree of 5'NCR
with study strains (bold) and other strains for
comparison: BDV-A (in red); BDV-B (in green); BDVC (blue) and BVDV 1a, BVDV 2, and CSFV (black).

Toloriol of the ELISA AIP by province

Fig. 1. Frequency of the ELISA AIP by province

Fig. 2. Neighbor-joining phylogenetic tree of 5'NCR
with study strains (bold) and other strains for
comparison: BDV-A (in red); BDV-B (in green); BDV
SSI 150-04DC
SSI 120-04DC

Table 2. Percentage of antibody and PCR+ve flocks and estimated flock seroprevalence:

Province	% ELISA- antibody positive flocks	Estimated flock seroprevalence (%) (% flocks)			% PCR positive flocks
		>30	10-30	<10	
Araba	93	89	4	8	17
Gipuzkoa	54	47	7	46	4
Bizkaia	55	46	9	46	7
All	68	61	7	33	9

Table 3. Estimates of a logistic model investigating presence of BDV antibodies in BTM, flock size, province and SCC.

Variable	Odds ratio	95%CI	P value
Flock size (ewes)*			
54-190	1.00	=	-
193-292	2.99	0.99, 9.02	0.052
296-363	4.65	1.43, 15.11	0.011
369-535	3.98	1.18, 13.37	0.026
536-1761	12.17	2.73, 54.16	0.001
Province			
Bizkaia	1.00	-	
Gipuzkoa	0.67	0.28, 1.63	0.379
Araba	5.85	1.67, 20.43	0.006

- AIPs were concentrated in one (Araba) or two (Bizkaia and Gipuzkoa) narrow and separate distributions (AIP<30% and >79%) (Fig.1), allowing to clearly discriminate antibody- positive and -negative flocks and to estimate within flock seroprevalence (Table 2).
- Only 14 flocks were PCR-positive and AIP in these flocks were <20% in 13 flocks and 78% in 1 flock.
- Being an antibody positive flock was associated with increasing flock size and province but not to the SCC (Table 3)
- 6/7 BDV amplicons reliably clustered with BDV type C strains and the remaining was closer to BDV type A although branching with BDV types A and B was not so clearly supported by bootstrap analysis (Fig. 2).

SUMMARY & CONCLUSIONS

- First large-scale BDV-prevalence study in dairy-sheep and BMT analysis allowed screening most professional flocks in Basque Country for BDV antibodies and PCR-products fast and inexpensively.
- BDV antibody-results indicate most Basque flocks have had recent exposure to BDV, including 54-55% in the provinces of Bizkaia and Gipuzkoa and >90% in Araba.
- However, few BTM samples were PCR-positive suggesting few infected sheep were contributing to the BT when samples were taken and highlights the limitations of this approach to identify infection.
- Genotype analysis of a selection of BDV PCR amplicons provided further evidence that type C strains are typical of this region and the apparent wide presence of a single type suggests a common origin of infection and that differences in BDV-exposure between provinces are probably due to recent local events that facilitated infection such as use of communal pasture and sheep trading.
- Results advocate for systematic BDV control to reduce its financial and welfare impact on sheep and their potential role as a pestivirus reservoir for other species.

ACKNOWLEDGEMENTS: Funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) (grant RTA04-057) & the Department of Agriculture, Basque Government.