

A mathematical model for interpretation of antibody titre distribution

A.F. Viet a,b, G. Medley b

^a Unit of Animal Health Management, Veterinary school & INRA, BP 40706, 44307 Nantes Cedex 03, France (corresponding author) ^b Ecology and Epidemiology group, Dept. Biological Sciences, The University of Warwick, Coventry, CV4 7AL, United Kingdom

Context and objective

Measurements of individual antibody titres define of a distribution of antibody titres at the herd level (e.g. Fig.1 with 3 antibody titre levels).

This distribution can potentially contain information on time since virus introduction

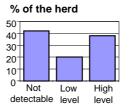


Fig 1. Example of antibody titre distribution

Objective:

To define a modelling framework to interpret distribution of antibody titres at herd level in terms of possible period of time since pathogen introduction.

Mathematical model-

- Stochastic SIR model with *K* antibody titre levels (*K*=3 in Fig.2).
- Dynamic of the antibody titre:
 - Increase after an infection (I) or a re-exposure (R),
 - Decrease if maternal antibodies (S) and after the infection (R).
- Horizontal transmission (rate $\lambda(S_{\alpha} \rightarrow I_{\alpha})$): frequency-dependent form, taking into account a variability of the sensibility (q_{α}) and of the excretion (p_{α}) related to the antibody titre level α .

$$\lambda(S_{\alpha} \to I_{\alpha}) = q_{\alpha} c \left(p_1 \frac{I_1}{N} + p_2 \frac{I_2}{N} + p_3 \frac{I_3}{N} \right) \quad \begin{cases} 0 \le p_3 \le p_2 \le p_1 \le 1 \\ 0 \le q_3 \le q_2 \le q_1 \le 1 \end{cases}$$

where I_{α} is the number of infected animal with the antibody titre level α and N the total number of animals.

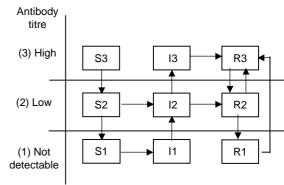


Fig 2. Diagrammatic representation of the model:
Sα ↔ susceptible with the antibody titre level α,
lα ↔ infected with the antibody titre level α,
Rα↔recovered with the antibody titre level α;
α∈{1 (not detectable), 2 (low), 3 (high)}.

Model use -

- Definition of the model for the considered pathogen and the population
- 2. Simulation of the model
- 3. For a given distribution (e.g. Fig.1), definition over time of the probability to have the observed distribution (e.g. Fig. 3 with 5000 simulations)

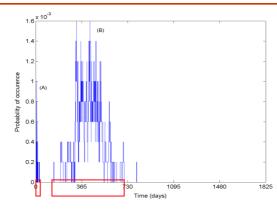
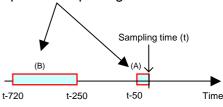



Fig 3. Proportion of simulations, over time, where the considered distribution was observed

Identification of most likely periods of pathogen introduction:

Discussion and conclusion

- Uses the dynamics of antibody titre distribution.
- Sensitivity and specificity of the test need to be considered.
- Other possible use: Determination of the probability that the pathogen was present at the time of sampling.