Cluster analysis as a tool for enhancing dialog between epidemiologists and clinicians?

Vincent Auvigne, Lucas Léger Ekipaj, 22 rue d'Assas, F-49000 Angers, France vincent.auvigne@ekipaj.com

In a cognitive perspective this incomprehension can be linked to our unwillingness to deduce the particular from the general and our willingness to infer the general from the particular [2].

In that perspective cluster analysis is a promising tool to enhance dialog between both characters as

Both clinicians and epidemiologists have a role to play in the management of animal diseases, but sometimes encounter problems in understanding each other [1]

A source of incomprehension is that clinicians focus on generalisation and epidemiologists on individualisation [1]

- It's a thorough statistical method aiming at grouping a set of objects in such a way that objects in the same group (called cluster) are more similar (in some sense or another) to each other than to those in other clusters.
- It allows to represent sets by norms and prototypes, which is a feature of our heuristic [2]

The interest of cluster						
analysis was tested using a						
dataset of 80 ELISA titres in						
sow colostrum against five						
antigens of E. coli (F4ab,						
F4ac, F5, F6, F7).						

Epidemiology and

Data management

Those seroprofiles were performed to assess quality of vaccination of sows.

	F4ab	F4ac	F5	F6	LT	
F4ab	1.00	0.58	0.46	0.79	0.68	
F4ac	0.58	1.00	0.78	0.54	0.41	
F5	0.46	0.78	1.00	0.57	0.65	
F6	0.79	0.54	0.57	1.00	0.84	
LT	0.68	0.41	0.65	0.84	1.00	
Correlation coefficient between E. coli Titres in sows (colostrum)						
Multiple correlation between titres make direct						

interpretation difficult : could cluster analysis be helpful ?

Constructing the model

A four step analysis without posing any prior hypothesis

We hope such an approach help reaching the necessary balance between clinical and epidemiological vision of our world.

Using the model

- Once the model constructed, it can be used to classify new seroprofiles i.e. determining which cluster fit the best to this new profile.
- The distance from the new seroprofile to the centre of each group is calculated
- A logistic regression model is used to assess the probability of belonging to each group

E. coli seroprofile classification (sow colostrum)

Bibliography

1. - AUVIGNE V., BELLOC C.: [The clinician and the epidemiologist: two paradigms, one dialogue]. Epidémiol. et santé anim. 2012, 141-147. 2. - KAHNEMAN D.: Thinking, Fast and Slow. 512 pages, Penguin, 2012. 3. - RStudio - Shiny [Internet]. Available from: http://www.rstudio.com/shiny/

Acknowledgment

This work was made possible by the permission from MSD Animal Health France to use field data of their own. Special thanks to Elisabeth Sallé and Sophie Gibaud for collecting the data