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Introduction

Farmer behaviour is an important factor in determining rates of disease transmission. How farmers manage disease through monitoring for its presence
and controlling its spread has the potential to change the dynamics of disease spread. Markov chain analysis was first introduced into epidemiology by

Gani and Jerwood [3]. who pointed out for the first time that so-called chain binomial models (originally due to En’ko) could in fact be characterised by
Markov chains. Around the same time epidemiologists began applying stochastic dynamic programming to problems of disease control [1]. Stochastic
games of disease spread extend this line of research to the case of multiple interacting decision makers. Stochastic games [4] allow us to incorporate
both disease dynamics using a Markov chain model of disease transmission and behavioural feedbacks in a natural way. Game payoffs are are based on
farm profitability and data for these are readily obtainable from publicly available data. Transition probabilities depend on farmer decisions and disease
dynamics and parameters for these may be obtained from epidemiological studies.

Example: Endemic equilibrium trap

Agricultural dilemmas

Agricultural dilemmas have a long history. A version of the prisoner’s
dilemma (the farmer’s dilemma) was proposed by Hobbes and elabo-
rated on by Hume. We consider a veterinary version of social dilem-
mas that may arise in different states of nature corresponding to dif-

In tables 2 and 3 the numbers in brackets below the diagonal are tran-
sition probabilities. The first number is the probability of transitioning
to state 1 and the second the probability of transitioning to state 2.
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By introducing dynamics we are able to obtain a richer set of equilibria
compared with the static case and uncover behaviour that we would not
observe in a static game. In a stochastic game payoffs are state depen-
dent and depend on the underlying disease state (see Table 2 and 3).
Transition probabilities from one disease state to another depend on the
joint decisions of all farmers.

Stochastic games

An n-player stochastic game involves maximizing the discounted ex-
pected returns for each player by choosing actions subject to the state
of game evolving according to a Markov chain. Equilibria are mixed strat-
egy Nash equilibria. These are found by solving an equivalent non-linear
programming problem. Stochastic games extend stochastic dynamic pro-
gramming to situations with multiple decision-makers whose decisions im-
pact each others payoffs. They are a very general class of game theo-
retic models that allow both discrete and continuous-states and decision
and can be extended to incorporate incomplete information and informa-
tion revelation such as that obtained through diagnostic tests. Stochastic
games are well suited to studying bioeconomic problems with multiple
decision-makers. However, they have not previously been applied to epi-
demiology.
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Figure 1 : Probability of treatment in state 1
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Figure 2 : Probability of treatment in state 2

cycles.

A low discount
factor corresponds to
farmers valuing the present
much more than the future
(myopic behaviour). Figure
1 shows how increased
time discounting (a lower
discount factor) reduces

the probability of treating

In state 1 (disease present).
The state therefore

IS unable to switch to

the disease free state when
players are myopic. Figure
2 shows that if one were
already in the disease free
state then in equilibrium one

would never treat. The state

then transitions to state 1
(disease present) leading to an endemic equilibrium trap. If farmers are
sufficiently patient the mixed strategy equilibrium leads to epidemic

Conclusion

Disease dynamics and economic considerations may be usefully analysed using stochastic games as a means of analysing new veterinary measures
such as diagnostic tests [2]. We are extending the approach to the study of an endemic disease: sheep-scab. This will allow us to account for for disease
dynamics based on a compartmental model in which transition between states is jointly determined by farmer behaviour. In the example presented here
we say how farmer time preferences may other things equal, impact whether a disease becomes endemic or enters a series of epidemic cycles.
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