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Introduction

Reconstruction of transmission trees during an outbreak 1s not only
a demanding and interesting task itself but can also help us to eval-
uate effectiveness of various control policies, identify mechanisms
of transmission and better understand disease dynamics. Different
types of data were used previously to determine directions of disease
spread: contact tracing, temporal, spatial and genetic data. Cottam
et al. [1] proposed a method to combine genetic and temporal data
to 1dentify transmission trees of foot-and-mouth disease virus.

In this work we elaborate the approach by Cottam et al. by taking
into account information about locations of farms, discuss the as-
sumption about independence of individual transmission links and
present a method that can estimate likelihood of a whole tree struc-
ture by integrating conditional probabilities of individual links. We
apply our approach and compare number of reconstructed transmis-
sion trees for a cluster of 15 farms that were infected during the 2001
foot-and-mouth epidemic in the UK.

Background

Cottam et al. [1] used the data of different types sequentially. Firstly,
all the possible transmission trees that agreed with genetic data were
enumerated. And then they were assessed using the likelihood func-
tion based on reporting dates. The likelihood function that farm ¢
infected farm 7 was deter ined using two additional functions:

e /;(t) — the probability that farm ¢ was first infected at time ¢ —
has a form of beta distribution and depends on the most likely date
of infection from lesion dating (determines the mode) and the date
1t was reported of being infectious (determines the right limit).

e [;. — the probability that the first infected individual on a given
farm incubates virus for £ days prior to becoming infectious (dis-
tribution of incubation periods) — has a form of gamma distribu-
tion with mean value of 5 days and 95% of values from 2 to 12
days.

F;(t) — the probability that farm i is a source of infection at time ¢
can be written as:
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where (; is the time at which farm ¢ was culled.

Assuming that the farms couldn’t be multiply infected and there are
only n possible sources of infection, the likelihood of infection can
be written as:
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Data of different types are available for 2001 FMD epidemic, these
include: spatial data (locations of farms), temporal data (dates of
farms being reported infectious and culled), genetic data (several
RNA sequences from 1solates on infected farms) and additional data
about species presented on farmes.
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Figure 1: The most likely epidemic tree for 15 observed farms based
on genetic and temporal data [1].
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Methods

Adding spatial data

To take into account information that farms are not equally suscepti-
ble to infections from other farms we add to the likelihood function
(equation 2) a multiplier K (d;;) — the distance kernel function that
shows at which rate an infectious farm ¢ could have infected a sus-
ceptible farm j according to distance between them.

The likelihood function 1s therefore rewritten to include spatial in-
formation:
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(a) Temporal data only (equation 2)

(b) Temporal and spatial data with information about species on
farms (equation 3)

Figure 2: The most likely sources of infection for every single ob-
served farm based on different types of data. The thickness of the
links corresponds to the value of likelihood function. Closely situ-
ated farms (e.g. D and M, A and N) became more likely to infect
each other, whereas likelihood of several events (e.g. G and P in-
fecting D) became lower.

Forward simulations

In [1] possible transmission links between farms were considered
independently — probability of a farm A infecting a farm B includes
all the possible pairs of dates when A and B were infected. This
means that we take into account scenarios when a source farm A
was infected after a daughter case B. Therefore, by multiplying
likelithoods of the edges we can not calculate the likelihood of a tree.

We can obtain likelithoods of trees (rather than likelihoods of certain
edges) by forward simulations or integration of conditional proba-
bilities to omit situations described above.

The likelihoods of infection transmissions should be adjusted during
the course of epidemic as they depend on the day of epidemic and
the current status of every single farm. If farm ¢ was infected at
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the likelihoods A;; that need to be recalculated.

We used spatial SIR epidemic model with infection and removal
stages on each step. Pre-calculated likelihood transmission matrix

M i]|7][t] was used to determine infection transmission between farms

and was updated every time when infection event occurred. Index
cases were fixed (A and K farms).

We performed series of forward simulations and obtained number
of possible epidemic scenarios — transmission trees with associated
infection dates. Epidemiological likelihood of a scenario was calcu-
lated as a product of likelihoods of transmission events.
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Sampling epidemic scenarios

Ideally, we would like to generate every possible epidemic scenario,
but enumeration of all the tree structures (and, on top of it, all the
possible timings of events) even for 15 farms would take enormous
amount of time.

Using the described methods, we can calculate epidemiological like-
lithood of a certain epidemic scenario. To obtain the likelihoods of
tree structures we need to sum up all the relevant scenarios. But the
number of different scenarios for a fixed tree structure 1S enormous.
Therefore, we decided to use Metropolis-Hastings algorithm to sam-
ple from a distribution of the likelihoods associated with scenarios
for a fixed tree structure.

Results

We performed series of 10000 iterations of the Metropolis-Hastings
algorithm for several tree structures:

(a) The most likely tree from [1] (b) The second of the most likely trees
from [1]
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(¢) The tree obtained during the forward (d) The tree obtained during the forward
simulations (bad) simulations (another)

Figure 3: The transmission trees used in analysis.
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(a) Spatial data, integration. (b) No spatial data, integration.
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(c) Spatial data, no integration. (d) No spatial data, no integration.

Figure 4: Results of Metropolis-Hastings algorithm for different epi-
demiological models.

Discussion

Compared to previous work, we considered the full conditional prob-
ability to generate the likelihoods of simulated transmission trees.
This requires different methods of comparing tree structures, as we
showed significant variation of likelihoods (see Fig. 4) depending
on actual timing of transmission events.

We also showed that adding spatial data to the likelihood function
changes the predicted transmission pathways of disease (see Fig. 4).

Because our approach is simulation-based, we cannot be guaranteed
of having identified the most likely epidemiological scenario, nev-
ertheless our comparison does show that considerable caution must
be maintained in attributing causality to any single epidemiological

link.



