



# Strong dose-response relationship between antimicrobial use and livestock-associated MRSA in pig farming: results from a pragmatic intervention study

# Alejandro Dorado García<sup>1,2</sup> | Wietske Dohmen<sup>1</sup> | Marian E.H. Bos<sup>1</sup> | Koen M. Verstappen<sup>2</sup> | Jaap A. Wagenaar<sup>2</sup> | Dick J.J. Heederik<sup>1,3</sup>

1 Utrecht University, Faculty of veterinary Medicine, Institute for Risk Assessment Sciences

2 Utrecht University, Faculty of veterinary Medicine, Department of Infectious Diseases and Immunology

3 University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care

#### **Background**

Livestock-associated methicillin resistant *Staphylococcus aureus* (LA-MRSA) of sequence type ST398 is widely spread in pig farms in the Netherlands with around 70% of them testing positive. This animal reservoir poses a public health threat since the resistant bacteria and resistance genes can be transferred to people living or working on farms and they can be introduced in hospitals and the community.

#### **Objectives**

- To assess trends in antimicrobial use (AMU) during the study period and its relationship with LA-MRSA.
- To identify other intervention measures aimed at reducing MRSA in pig herds.

## Methods

#### Study design and laboratory analysis

☐ 36 pig farms in the Netherlands.

Table 1. Number of farms by type of production and external supply of gilts from other farms.

| Type of production                                       | External of gi | Total |    |
|----------------------------------------------------------|----------------|-------|----|
|                                                          | CLOSED         | OPEN  |    |
| FARROW-TO-FINISHING (delivering fatteners for slaughter) | 11             | 13    | 24 |
| MULTIPLIERS (delivering pigs for fattening or gilts)     | 3              | 9     | 12 |
| Total                                                    | 14             | 22    | 36 |

- ☐ Sampling at 0, 6, 12 and 18 months.
- □ Nasal swabs from 60 animals per farm (10 pools of 6 animals)
- □ Selective enrichment in MRSA Brilliance<sup>™</sup> (Oxoid®) and RT-PCR targeted at mecA and C01 genes to confirm presence of ST398.

#### **Data collection**

- □ Data on AMU per farm: Animal Defined Daily Dosages per year (ADDD/Y) for the 6 months preceding each sampling moment.
- ☐ Tailor made intervention protocol focused on: improving personal and farm hygiene, animal contact structure and reduction in AMU.
- ☐ Questionnaire at 0, 6, 12 and 18 months.

## Data analysis (SAS and R)

In all farms and stratifying by open/closed farms and farrow-to-finish /multipliers:

- I. Variable reduction: logistic regression with PROC GENMOD (GEEs) in the 4 cross-sections. Selection when p<0.2 in at least 2 cross-sections.
- II. Univariate analysis: random intercept non-linear mixed model (PROC GLIMMIX) for a pool to be MRSA positive adjusting for sampling moment (as factor) and age group of the pool.
- III. Multivariate analysis: backward elimination of non-significant terms from full model (made of variables with P<0,10 from step II).

#### Results

□ MRSA prevalence and AMU differed between open and closed farms, and multipliers and farrow-to-finish farms.

Figure 1. Slight decrease in MRSA pool-prevalence and significant reduction in AMU over time.





----Multiplier farms (n=12) (overall 11,2 ADDD/Y)

----Farrow-to-finish (n=24) (overall 4,7 ADDD/Y)

□ AMU and MRSA were positively associated (ORs per 5 ADDD/Y increase) in all farms analysis (OR=1,4; P=0,02) and specifically in high AB consumers: open farms (OR=1,3; P=0,12) and multipliers (OR=2,1; P=0,03).

Figure 2. Non-parametric spline (using GAMM in R) for a pool to be MRSA positive (OR) with increasing AMU (log ADDD/Y).



- □ Over time, the decrease in AMU was associated with a reduction of MRSA-pool prevalence in all farms and *open* farms analysis:
  - ➤ Significant interaction term between ADDD/Y and sampling moment (P=0.01, consecutive ORs of 0.7, 1.9, 1.5 and 1.1).







- ☐ Univariate analysis in questionnaire items:
  - Significant risk factors in all, open and closed farms: injection of AB in piglets in the first week, tooth clipping in piglets, vaccination of piglets and/or fatteners.
  - ➤ Biosecurity items were found to be protective mainly in *closed* farms: phases of production with different compartments, boarding platform for sows, washing overalls.
- □ AMU was not a compendium of underlying determinants: pairwise Spearman's rho coefficients between ADDD/Y and reduced set of variables <0,5.

Table 2. Multivariable model for a pool to be MRSA positive (n=1351, pools) in all farms (n=36)

| Variable                                | Category         | N    | OR   | 95% CI       |
|-----------------------------------------|------------------|------|------|--------------|
| Sampling                                | 0                | 342  | 1.39 | 0.90-2.13    |
| moment                                  | 6 months         | 340  | 2.84 | 1.86-4.34*** |
|                                         | 12 months        | 338  | 2.45 | 1.63-3.69*** |
|                                         | 18 months        | 331  | Ref. | -            |
| Age group of                            | Gilts            | 268  | 1.03 | 0.66-1.60    |
| pool                                    | Finishers        | 178  | 3.36 | 2.04-5.52*** |
|                                         | Suckling piglets | 273  | 3.99 | 2.59-6.15*** |
|                                         | Weaned piglets   | 362  | 7.85 | 5.12-12.0*** |
|                                         | Sows             | 270  | Ref. | -            |
| Animal external                         | Open             | 827  | 6,34 | 2,06-19,49** |
| supply                                  | Closed           | 524  | Ref  | -            |
| Delivery room for                       | Yes              | 1031 | 0.40 | 0.22-0.74**  |
| materials                               | No               | 320  | Ref. | -            |
| AMU (log10<br>(ADDD/Y))                 | Per 5 ADDD/Y     | 1351 | 1.42 | 1.02-1.97*   |
| Hygiene piglet                          | Disinfection     | 179  | 0.41 | 0.17-0.99*   |
| compartment                             | Soaking agents   | 270  | 2.55 |              |
|                                         | Soaking & dis.   | 658  | 1.17 |              |
|                                         | None             | 244  | Ref. | -            |
| *P<0,05; **P<0,00                       |                  |      |      |              |
| , , , , , , , , , , , , , , , , , , , , |                  |      |      |              |

#### Conclusions

- ❖ Important differences in prevalence, AMU and selection of variables existed by type of production and by external supply of animals. Approaches for MRSA control should take these differences into account.
- ❖ AMU has a strong and positive dose-response relationship with MRSA carriage in pigs especially in farms with high AMU (open and/or multipliers).
- ❖ In addition to the reduction in AMU, we identify other determinants that can define attainable measures for MRSA control (e.g. tooth clipping, increased biosecurity).