Foot-and-Mouth Disease 2007: Statistical Surveillance in Real-Time

Chris Jewell, Gareth Roberts

Dept Maths and Stats, Lancaster University; Dept of Stats, University of Warwick

Undetected Infection Probabilities

Occult prob.

- 0.005 0.010
- 0.011 0.050
- 0.051 0.100
- 0.101 0.350 |
- 0.351 1.000
- ▲ Known IP
- Susceptibles

Real-time analysis of FMD2007, starting immediately after IP4. Coloured dots represent the probability that a farm at that location is infected-but-undetected.

This gives information to inform surveillance strategy and shows a probabilistic

representation of the current epidemic extent.

Modelling details

Basic model:

Susceptible → Exposed → Infected → Notified → Removed

Farm-farm transmission, β_{ij} between Infected (or Notified) i, and Susceptible j:

$$\begin{split} & \boldsymbol{\beta}_{ij} = (\boldsymbol{\beta}_1 \cdot \boldsymbol{c_i}^{\phi} + \boldsymbol{s_i}^{\phi}) (\boldsymbol{\beta}_2 \cdot \boldsymbol{c_j}^{\phi} + \boldsymbol{s_j}^{\phi}) \cdot \frac{\boldsymbol{\beta}_3}{\rho[i,j] + \boldsymbol{\beta}_3}, \quad i \in \boldsymbol{I}, j \in \boldsymbol{S} \\ & \boldsymbol{\beta}_{ij} = (\boldsymbol{\beta}_1 \cdot \boldsymbol{c_i}^{\phi} + \boldsymbol{s_i}^{\phi}) (\boldsymbol{\beta}_2 \cdot \boldsymbol{c_j}^{\phi} + \boldsymbol{s_j}^{\phi}) \cdot \frac{\boldsymbol{\beta}_4}{\rho[i,j] + \boldsymbol{\beta}_4}, \quad i \in \boldsymbol{N}, j \in \boldsymbol{S} \end{split}$$

 $c_{\rm k}$ and $s_{\rm k}$ the number of cattle and sheep on farm k; g(i)] the Euclidean distance between i and j; β_i infectivity of cattle wrt. sheep β_i susceptibility of cattle wrt. sheep; β_F , β_i spatial kernel parameter (Keeling et al. 2001)⁴

Exposed to Notified time, *d*, imputed with prior:

$$F(d) = \exp(-a \exp(-b \cdot d) - 1)$$

modified Gumbell distribution with mean 7.5 days (Kypraios 2007)

Exposed to Infected time: Fixed at 4 days (Keeling et al 2001)⁴

Introduction

During epidemics, contact tracing is used to identify individuals who are at high risk of being infected due to their relationship with a known infective individual. Contact tracing requires high efficiency in terms of detecting *all* possible contacts with a known infective and, for large epidemics, this can be shown to be unfeasibly high¹. Historically, for large epidemics, contact tracing is assumed on a spatial basis and has lead to the concepts of ring-culling and contiguous-premises culling.

The aim of this study was to predict the existence of infectedbut-undetected farms at any stage during the epidemic, providing information for targetted surveillance and on the current extent of the epidemic.

Analysis

This analysis uses recent **Bayesian methodology** which was primarily developed for making inference on infection transmission rates^{2,3}. However, the incorporation of unobserved infection times and infected-but-undetected infections makes this **suitable for statistical contact-tracing**.

Transmission model: based on Keeling et al (2001)⁴. Each farm treated as an individual.

Data: Location, number of cattle, number of sheep. Obtained from 2003 census data. Detection and end of cull times obtained as days after the first detection:

IP	IP1	IP2	IP3a	IP3b	IP4	IP5	IP6	IP7
Detected	0	4	40	40	41	45	49	52
Cull ended	2	5	42	42	41.5	45.5	50	52.5

Prior information: Bayesian prior information based on the posteriors in Kypraios (2007)⁵ Bayesian analysis of the UK 2001 FMD outbreak.

References

- 1. Eames K, Keeling M (2003) Contact tracing and disease control. *Proc R Soc Lond B*, **270**:2565
- 2. O'Neill PD, Roberts GO (1999) Bayesian inference for partially observed stochastic epidemics. *J Roy. Statist. Soc. Ser. A*, **162**:121
- 3. Neal PJ, Roberts GO (2004) Statistical inference and model selection for the 1861 Hagelloch measles epidemic. *Biostatistics*, **5**:249
- 4. Keeling MJ et al (2001) Dynamics of the 2001 UK Foot-and-Mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science, 249:831
- Kypraios T (2007) Efficient Bayesian Inference for Patially Observed Stochastic Epidemics, and a New class of Semi-Parametric Time Series Models. PhD thesis, Department of Mathematics and Statistics, Lancaster University, Lancaster.