A COHORT STUDY TO INVESTIGATE THE ASSOCIATION BETWEEN EWE MILK SOMATIC CELL COUNT AND LAMB WEIGHT

Huntley, S., Cooper, S., Green, L.E.

School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL. Contact Selene Huntley: s.huntley@warwick.ac.uk

Introduction

Subclinical mastitis results in a reduced milk yield in dairy ewes ¹ and in decreased weight of lambs reared by ewes ^{2,3} Previous studies on the effect of subclinical mastitis on lamb growth have not investigated and accounted for the complex associations of other variables on the longitudinal relationship between subclinical mastitis and lamb weight.

Methods

Data

collected:

observation:

at each

Milk sample and data collection : One farm, January to May 2010.

Dependent variable: lamb weight (kg)

Cohorts followed

Ewes (n=67)	Lambs (n=101)		Cohort	Breed	Age	Number of lambs
SCC of milk from each udder half	Weight		1 (n=16)	Suffolk mules	2 and 6 yrs	1
Body Condition Score (BCS)	Diarrhoea	A B B B B B B B B B B B B B B B B B B B				

2 (n=22)

3 (n=17)

4 (n=12)

Suffolk mules

England mules

England mules

North of

North of

2 and 6 yrs

9 yrs

9 yrs

22

≥2

Hypotheses

A change in lamb weight is associated with •Somatic cell count (SCC)-subclinical mastitis •Teat lesions-external damage

Lam	b	we	igl	ht
			-0-	

Mean lamb weight with 95% confidence intervals by age of lamb in weeks

	Teat damage	Orf	
	Abnormalities of the udder or milk		
at lambing only	Litter size	sex	
Data analysis us MLwiN 2.11 (Centre for Mu	Sing multilevel linear regression Itilevel modelling, University of Bristol)	models	Images from S. Cooper
Lamb weight mo	Somatic cell c		

Somatic cell count model: Dependent variable: log₁₀ SCC (cells/ml) Random effects: ewe, udder-half and observation as levels 3, 2 and 1 Random effects: ewe, lamb and observation as levels 3, 2 and 1

Results	Data summary					
	Variable	ewes (n=67)	Variable	Lambs (n=101)		
	Rearing singles	35	Female	42		
	Rearing twins	31	Male	59		
	Rearing triplets	1	Orf (at any observation)	16		
	≥ 1 teat lesion (at any observation)	41	Diarrhoea (at any observation)	25		

Lamb weight model

After accounting for lamb age, birth weight, litter size, whether the lamb had diarrhoea, and supplementary concentrate fed to the ewe before lambing, lower lamb weights were associated with:

higher ewe mean SCC

the observation of a new teat lesion

Lambs reared by ewes on which a "non-traumatic" teat lesion

teat position

The teat position associated with heavier lambs was at 4 and 8

log₁₀ SCC of above 5.6 (400,000 cells per ml) weighed on average 1.4kg [-2.1,-0.7] less at

(warts, spots, orf) was at that visit weighed 0.5kg less [-1.0, 0.1] $(significant at 90\%)^{\dagger}$.

Lambs reared by ewe on which a "traumatic teat lesion" (bites tears and chapping) was observed at the previous visit weighed 0.9kg less [-1.4, -0.1].

o'clock. Lambs reared by ewes with the most medial teat positions weighed on average 1.4kg less

[-2.5,-0.3] and those in the more lateral teat positions weighed up to 1.5kg [-2.6, -0.4] less than those reared by ewes with teats in the 4 or 8 o'clock position.

Significance set at 0.05 unless otherwise stated * Images adapted from Casu et al., 2006

Lambs reared by ewes that were 9 years old weighed on average 2.4 kg less [-3.4,-1.5] at each observation than those reared by ewes that were 6 years old. Lamb gender, ewe body condition, breed and udder size were non significant variables.

Somatic cell count model

that observation.

After accounting for days in lactation and average lamb weight, **SCC was significantly higher in:**

Height

(where "lower" is a greater distance (in cm) as measured from base to the apex at the bifurcation of the udder with the ewe standing).

ewes with a greater cross-sectional

area of both teats For every 1 cm² increase total teat crossin sectional area, there was an associated 0.03 [0.01, 0.05] increase in log₁₀ SCC.

old and thin ewes

9 year old ewes of BCS<3 in lactation and 6 year old ewes in of BCS <2 in lactation had significantly higher SCCs when compared to young fit ewes (2 years old and of BCS>3).

For example, the thinnest 9 year old ewes of BCS>2 had a 0.27 higher log₁₀ mean SCC and thinnest 6 year old ewes had an increase of 0.70 0.27 higher log₁₀ mean SCC [0.23,1.17].

Somatic cell count

Log₁₀ SCC with 95% confidence intervals by weeks in lactation

ewes with a lower udder drop

Conclusions

After controlling for ewe and lamb variables, lower lamb weight can be explained by subclinical udder infection of the ewe and the occurrence of teat lesions. There is an association between udder conformation and the level of SCC and lamb growth which warrants further investigation. By improving knowledge of the dynamics of SCC, we provide further understanding of how to maintain udder health of ewes in order to benefit to farmers with ewes rearing lambs for the meat industry.

1. Saratsis, P., Alexopoulos, C., Tzora, A., Fthenakis, G.C. (1999). "The effect of experimentally induced subclinical mastitis on the milk yield of dairy ewes." Small Ruminant Research 32: 205-209. 2. Fthenakis, G. C., Jones, J. E. T. (1990). "The effect of sub-clinically induced mastitis on milk yield of ewes and on the growth of lambs." British Veterinary Journal 146: 43-49. ., Dubreuil, P., Higgins, R., Bélanger, D. (2008). "Risk factors and impacts of linical and subclinical mastitis in commercial meat-producing sheep flocks in Quebec, Canada." Preventive Veterinary Medicine 87(3-4): 373-393. 4. Casu, S., Pernazza, I., Carta., A. (2006). "Feasibility of a Linear Scoring Method of Udder Morphology for the Selection Scheme of Sardinian Sheep." Journal of Dairy Science 89(6): 2200-2209.

