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[ Background ] . Whatis uncertainty? | . The Approach |

Mathematical modelling is common place in the Uncertainty is a reflection of confidence in a AIM: To use field data from an epidemic to capture
study of epidemic diseases. Although it has been parameter taking a particular value. in real time the values of parameters In a
shown that such approaches can be used to make specified epidemic model. These are then used

The amount of uncertainty depends on the amount of data

qualitative statements about the effect of control , , to simulate from the same model to provide a
available — sample size.

strategies on the likely outcome of an epidemic, quantitative risk-prediction at any point during an

their main weakness is in a lack of rigorously Frequentist: A parameter takes a point estimate, the epidemic.

estimated parameters. This poster outlines a mean, with a standard error (Normal assumption)
Bayesian methodology for making inference on

parameters from data in order to make simulation

 Fully Bayesian approach

Bayesian: Represents a parameter as a probability . The epidemic is modelled at the individual (eg

models more quantitatively predictive. distribution. farm) level
* SINR model:
- Covariates are obtained on a farm-level . Obtained by talking 1o N | |
basis during peacetime. This allows us to L dUSITY ex grts angl sin > Individuals can be susceptible, infected,
study the relationships between farms in Expert y eXperts, ysihg detected, and removed
space. and commerce L data from previous epidemics
pace, ' Opinion in the same or other species. H . R
» Epidemic data is taken from the field . Ifz)cfoj;gg;,?;[:goans Bayesian
during a disease outbreak. For each P
farm, we have a pair of detection and
Qgrt] lggf::g; r?gmole:tjat(t)r?aetﬂr]r?ignvtl tg eany Reversible Jump Markov Chain Monte Carlo
available. . L .
» Continuous time inhomogeneous Poisson process for
Parameter infection and notifications
{ Why UnCertainty? ] Inference * Posterior distributions of the parameters of interest are
: obtained
* Missi ;
Quantitative risk predictions for epidemics require gsl;?\?)kflsaets/e d infection times
simulations  driven by formaily estimated » Presence of undetected infections in the population.

parameters.

* Posterior distributions of the parameters of
interest are obtained

* At the start of the epidemic, there is little field data
and the posterior estimates are highly influenced by
the prior information

* As the epidemic progresses, we learn from field
data which updates the prior information to give
posterior estimates of the parameters

Threshold theorem: (homogeneous large population)
If R, < 71— epidemic dies out with probability 1

If R, > 17— epidemic able to take hold and dies out with
probability less than 1

Example:

R, is estimated to be 0.999

* If a point value is used, we predict that the =
epidemic will not take off. L
. . - - Erpe value = 0018
- Introducing uncertainty allows R, to exceed 1 . 9 — Slowr nciies
. e . . E - ol In,
with some probability, increasing the chance of a 5 g 240 known mecthies
large outbreak o
Simulation 2
Ro=1 | |
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Bayesian Parameter Learning

o~ Pr(Ry < 1) Pr(Ro=1)=0.17
=0.83
- » Stochastic simulations are then used to predict the
future course of the epidemic:
- L \ \ | » Same model as parameter inference
0 1 2 3 4

» Many simulations are used, with parameters
drawn from the posterior distributions

» This naturally incorporates the uncertainty in
the parameter estimates

Introducing uncertainty into R, — the density plot
shows that R, has a significant probability of being

greater than 1
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