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Introduction

In livestock epidemics, a mainstay of reducing the capacity of an
infected premises (IP) to transmit disease is reducing the infection to
detection time. This is typically achieved by active surveillance:
following up known contacts with the infected premises (IP), and
actively patrolling designated surveillance zones.

ldeally, enough resource would be available to perform all necessary
surveillance. However, resources are often constrained and
surveillance teams must be targeted to those premises considered to
be high risk. Deciding on high risk premises is difficult, as the
epidemiological characteristics of the disease often determine the
most important transmission mechanisms.

Here we use a simulated outbreak of a notifiable disease in the GB
poultry industry to demonstrate how real-time Bayesian analysis of an
epidemic can be used to effectively target active surveillance.

Aims

* To use real-time Bayesian analysis of case-reporting and contact
tracing data gathered during an epidemic to measure transmission
dynamics, and thereby target active disease survelillance.

« By targeting surveillance, cases may be detected earlier, reducing
the potential for further disease transmission, and therefore the
extent and duration of an epidemic.

Methods

Our existing Bayesian framework for real time inference and
prediction for epidemics is used to generate probabilities that
premises are harbouring undetected disease (see below).

We extend this framework to incorporate contact tracing behaviour
using a recently developed data-determined mixed likelihood
technique’.

Data: GB Poultry Register extract, 2006.

Covariates: Premises location, and major production type; feedmill,
abattoir, and company networks.

Observations: Case detection time; time at end of cull; contact
tracing data (source, destination, time, type).
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Comparison of surveillance strategies

1. Passive — no active surveillance. Case detection relies on SOS
calls from farmers.

2. Random — survey n premises at random within the surveillance
Zone.

3. Bayes — use Bayesian guided surveillance to survey n high occult
probability premises. Contact tracing not available.

4. Bayes CT — as (3), but using contact tracing data obtained from
detected IPs.

Disease control algorithm

e |

Simulate epidemic to time t

n = 15 survelllance teams
Sx = strategy x (as above)
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500 simulations per
strategy

Results

Distributions of final number of culled premises and epidemic duration
under the 4 surveillance strategies.
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Surveillance: Passive Random Bayes Bayes + CT
Mean #
culled (SD) 74.9 (210) 42.7 (148) 18.7 (83.1) 7.04 (34.5)
Mean 179(32.2) 13.3(22.2) 8.91(7.81) 8.38 (8.49)
duration (SD) ' ' ' ' ' ' ' '
Conclusions

» Bayesian guided surveillance targeting can be highly effective in
optimising epidemic control tactics to minimise the number of culled
premises.

« Contact tracing provides a significant increase in targeting
accuracy, and should be provided to analysts in real-time In
conjunction with case reporting.

e Because it bases predictions on current data, this method will be
useful in adapting targeted surveillance to changes in epidemic
behaviour as and when they occur.

 Future: is surveying the highest occult probabilities optimal? Role
of network centrality”? Testing against a “more realistic” control
strategy — Defra, please talk to us!
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