# Modelling *Salmonella* spread in a pig farm under three biosecurity strategies

A. Lurette<sup>1</sup>, C. Belloc<sup>1</sup>, S. Touzeau<sup>2</sup>, T. Hoch<sup>1</sup>, H. Seegers<sup>1</sup>, C. Fourichon<sup>1</sup>

<sup>1</sup>Unit of Animal Health Management, Veterinary Shool – INRA, BP 40706, 44307 Nantes Cedex 3, France. <sup>2</sup>Unit of Applied Mathematics and Computer Science, INRA, 78352 Jouy-en-Josas Cedex, France.

#### INTRODUCTION

The production level is a critical point of the contamination of the whole pork supply chain by *Salmonella*.

**Objectives** : To estimate the number of shedder and carrier pigs at slaughter age under three biosecurity strategies.

Re-activation

### **MATERIAL & METHODS**

- 1. Development of a **stochastic mathematical model** to simulate:
  - the pig population dynamics (Fig.1) in a farrow-to-finish herd with batch farrowing management;
  - the **transmission of** *Salmonella* depending on the contamination of the pen floor (Fig. 2).



Figure 1. Simplified farrow-to-finish herd production system. flows linked to demographic processes flows controlled by producers

## RESULTS

The number of batches in a group of slaughtered pigs was significantly higher under the BM strategy (Tab. 1).

Table 1. Proportion of groups of pigs at slaughterper number of batches under the three biosecuritystrategies.

| Biosecurity<br>strategy | Number of batches |      |      |      |
|-------------------------|-------------------|------|------|------|
|                         | 1                 | 2    | 3    | >3   |
| Al/AO                   | 0.18              | 0.34 | 0.30 | 0.18 |
| NDP                     | 0.21              | 0.35 | 0.27 | 0.17 |
| BM                      | 0.15              | 0.20 | 0.31 | 0.34 |

Prevalence of shedder and carrier pigs varied widely between batches, within and between strategies (Fig. 3).

### **DISCUSSION & CONCLUSION**

A less strict management increased dramatically the number of shedder and carrier pigs at slaughter age.

Further validation of the model based on field data is considered.



Contact structure influenced by:

- the variability in reproduction and in growth,
- the producers' management,
- ightarrow leading to variations in the transmission.

**Groups of slaughtered pigs** were issued from several batches depending on their weight.

Parameters: from published literature and expert opinion.

 2. The three biosecurity strategies differ only for finishing pigs: AIAO strict all-in/all-out management with complete cleaning, disinfection and drying period between batches;
NDP all-in/all-out allowing the suppression of the drying period;
BM management allowing the suppression of the drying

**BM** management allowing the suppression of the drying period and batch mixing.

**3. Simulations** were run after the introduction of a shedder gilt in a AIAO herd. After equilibrium, the 3 strategies were implemented.



Figure 3. Prevalence of shedders & carriers at slaughter age.

Mean prevalence differed significantly between strategies. AIAO:  $0.27\pm0.04$ , NDP:  $0.45\pm0.02$ , BM:  $0.53\pm0.01$ .

Both the heterogeneity of the contact structure and the biosecurity strategies play a major role in pathogen transmission in a farrow-to-finish herd.





