

Impact of risk-perception on decision-making for FMD control

Maud Marsot¹, Séverine Rautureau², Barbara Dufour³, Benoît Durand¹

INTRODUCTION

- Foot and mouth disease (FMD) represents a major threat for developed countries \rightarrow economic losses + epidemiological impacts + social impact (massive slaughter acceptability)

- Models on FMD investigate the mean effect of control measures against outbreaks, and not their variability, which is linked to the risk-perception for decision-makers

- How do decision-makers choose a control strategy in case of FMD epizootics ? \rightarrow according to their **risk perception**: risk-averse decision-makers prefer low variable strategies, whereas risk-seeker prefer strategies with the minimal mean impact → according to the **epidemiological**, **economical or social impact** of control strategies

RESULTS

SPS

National level: in green, optimal mean strategy; in red, worse mean strategy

Regional level: regional optimal strategies according to mean impact

<u>Question 1</u>: strategy with lowest mean impact for risk-seeker?

<u>Question 2</u>: strategy with lowest impact variability for risk-averse?

according to epidemiology, economy and social opinion

MATERIALS AND METHODS

Control strategies

- 7 fixed control strategies against FMD epizootics

		slaughter		vaccination	
	strategy	infected premisses	preemptive	preemptive	suppressive
SO	stamping-out	yes	no	no	no
PS	preemptive slaughter	yes	1 km (1)+(2)	no	no
PV	preemptive vaccination	yes	no	10 km (1)+(2)	no
SPS	selective PS	yes	1 km ⁽²⁾	no	no

 \rightarrow no unique optimal mean strategy in France for the 4 output variables \rightarrow the nature of best strategies differ between regions and output variables

<u>Question 2</u>: strategy with lowest impact variability for risk-averse?

National level: in green, lowest variability ; in red, highest variability

Regional level: regional optimal strategies according to lowest impact variability

PV

Stochastic state-transition model of FMD

Reference: Rautureau et al. 2012 Trans Em Dis, 59:4 311-322

S = exposed and susceptible L = infected but not infectiousI = subclinically infectious J = clinically infectiousR = removed or recovered

3 forces of infection:

- within-batch λ_{w}
- between-batch $\lambda_{\rm b}$ - environmental λ_{e}

SPS SPV SPSV **SV PV**

 \rightarrow preemptive slaughter strategies (SPS) = high impact variability \rightarrow vaccinal strategies (PV, SPV) = low impact variability \rightarrow optimal strategy fo variability is different between regions and output variables

 \rightarrow no unique optimal mean strategy at national and regional level regarding epidemiology, economy, and social opinion

SO

Main model output variables

Data analysis

- \rightarrow 7350 simulations (7 strategies x 21 regions x 50 introduction points)
- \rightarrow for the 7 strategies, evaluation of the mean output variables at the national and regional level + national variability of the log-transformed output variables (Linear Mixed Models, function lmer)

→ high variability of strategies with preemptive slaughter and low variability of vaccinal strategies (except for export losses)

Risk-perception of decision-makers should be taken into account. Stakeholders should be involved. Strategies should be adapted to local conditions \rightarrow without a unique optimal strategy (risk-perception, stakeholders, local conditions), adaptive strategies are needed

¹ EPI, French Agency for Food, Environmental and occupational health Safety (ANSES), Maisons-Alfort, France ² DGAL, Bureau de la Santé Animale, Paris, France

³ EPIMAI, Alfort National Veterinary School (ENVA), USC ANSES, Maisons-Alfort, France

Contacts : maud.marsot@anses.fr ; benoit.durand@anses.fr

Society for Veterinary Epidemiology and Preventive Medicine (SVEPM) - 20-22 March 2013 - Madrid