Evaluation of HPAI surveillance in Mali

Molia S1*, Lapeyre S1, Sidibé M2, Sissoko K2, N'Diaye R3, Diall M3, & Doumbia L2

¹ CIRAD, UPR AGIRs, Bamako, Mali ² DNSV, Bamako, Mali; ³ PACE, Bamako, Mali

INTRODUCTION

EPIVET: the network used for HPAI surveillance in Mali

- EPIVET = epidemiosurveillance network established in 2001 in Mali and reorganised in 2008
- · HPAI added in 2006 to the list of diseases targeted by EPIVET. Various projects (PALCGA, SPINAP, STOP-AI, etc) thereafter funded to support the surveillance of HPAI in Mali
- · Problem = no review of the surveillance system available to know where to allocate resources
 - ⇒ Objectives: Evaluate the organisation and functioning of HPAI surveillance
 - Identify strengths and weaknesses
 - Provide recommendations for improvement

METHODS

Semi-quantitative evaluation of HPAI surveillance

Design of a semi-quantitative evaluation grid

- Adapted from evaluation grid for rinderpest surveillance used by PACE program
- Includes 8 components, 28 criteria, 128 subcriteria
- · Each criterion corresponds to a question

		Extract from evaluation grid
	Criteria	Subcriteria
	6.1 Existing and functioning database	5.1.1 Is there a computer-based database for surveillance data?
*		512 Is there enough computer equipment?
ē		5.1.3 Is one person identified as responsible for the database?
E		5.1.4 Is there a regular database back-up in accordance with the pre-established timetable?
ð	5.2 Efficient data entry	5.2.1 Is there a data management procedure (validation, entry, analysis)?
ĉ		5.2.2 Are data entered regularly in accordance with the pre-established timetable?
a		523 Are data entered by an identified and skilled person?
		5.2.4 Are entered data verified and validated?
at a	5.3 Efficient data analysis	5.3.1 Are data analysed regularly in accordance with the pre-established timetable?
		5.3.2 Does data analysis include the production of maps?
10		5.3.3 Is there a multidisciplinary analysis and interpretation of data?
		5.3.4 is a data analysis report produced regularly in accordance with the pre-established timetable

Field survey and scoring by different experts

- · Visits, face to face interviews, and questionnaire fill-up in all regional units and surveillance posts of EPIVET network
- · Questionnaire data entered in database then used to score each question from 1 (worst) to 4 (best) based on scoring tables specific to the type of question
- Scoring by four different experts: two members of EPIVET, two outside observers
- · Scores averaged after discard of minimum and maximum scores

Scor (ing table for quest E.g. % of samples ar in a proper state	riving at the laborate of conservation)	as % ory
	Possible answer	Score	

Possible answer	Score
≤15%	1
15< ≤30%	1.5
30< ≤45%	2
45< ≤60%	2.5
60< ≤75%	3
75< ≤90%	3.5
>90%	4

RESULTS

Overall satisfactory surveillance efficiency

Evaluation scores vary among components of the surveillance system

- Overall score just above the satisfactory level
- · Components linked to organisation of the surveillance system have good scores
- Components linked to functioning have higher scores at the central level than at the field level

Overall	3,03
Efficiency follow-up	2,1
Network motivation	2,4
ormation Dissemination	3.2
Data management	3,4
Diagnostic laboratory	3,1
Field functioning	2,8
Surveillance strategy	3.3
Network organisation	3,4
1	1,5 2 2,5 3 3,5

Surveillance efforts vary over time and among regions

- Surveillance efforts increased during dry cool season and decreased during dry hot season
- Surveillance efforts significantly higher in the regions of Sikasso, Segou and Mopti, which have the largest poultry populations

DISCUSSION

Towards improvement

- Semi-quantitative evaluation methods are simple and useful to identify the weakest components of surveillance systems when stochastic scenario tree models are not applicable
- · Subjectivity is inherent to this type of evaluation but was reduced by using scoring tables and four scorers

- Some improvements can easily be implemented without much financial input (E.g. database back-up, distribution of outbreak investigation manuals)
- External support is needed for other improvements (E.g. availability of vehicles and gas coupons, trainings, simulation exercises)

Acknowledgments: We thank the French Ministry of Foreign Affairs for funding this work and staff from the laboratory and veterinary services for facilitating field investigations