A simple model of disease spread and targeted surveillance in the Scottish fish farm
 marinescotland
 science network
 Alexander G Murray* and Lorna A Munro Marine Scotland Science, Aberdeen, UK
 Email: sandy.murray@scotland.gsi.gov.uk
 The Scottish Government

Potential disease spread Left: spread to sites in immediate contact with index case by receipt of 1 or more deliveries
Right: Spread to all sites in direct or indirect contact with index case, i.e. receive deliver from index case or site that has received from index and so on until no uninfected sites

Part of the network green = freshwater sites, blue = marine sites

Surveillance model

Infection can spread to up to 106 sites with time
However, about half index sites lead to no extra cases
Risk is different for different index sites
Spread simulated for finite time
100 time steps
1% chance of spread per contact per time step
Detection assumed to lead to movement restrictions that stop further spread

Regimes tried:
(a) random sampling low effort
(b) random sampling high (double) effort
(c) target sites based on movements to site (low effort)
(d) target sites based on movement from site (low effort)

Results shown in table 1 for:
(1) all runs
(2) small epidemics ($5-10$ cases without control)
(3) large epidemics (>20 cases without control)

Targeting is as effective as doubling sampling effort
Most effect in preventing large epidemics
contacted

Table 1. Controlled epidemics under different sampling (minimised outbreak shown in red)

Set of runs	No Control	Random sampling		Targeted Sampling	
Low runs	4.6	2.6	2.2	2.2	2.3
All runs	To	Hem			

Conclusions

- Simple models show variation in size of potential epidemics spreading via the Scottish fish movement network
- Range from 1 to 106 cases, depending on index site
- Depends on species and environment
- Surveillance with movement controls simulated
- Simple targeting of controls is as effective as doubling effort in controlling potential outbreaks

