

Persistence of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in GB pig herds: A mathematical study

Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry. CV4 7AL

C.M.Evans@warwick.ac.uk +44(0)2476 575874

Introduction

Impact of PRRS

- · Inability of sows and gilts to conceive
- · Abortion if sows infected early in gestation
- Premature farrowing
- Birth of weak-born and dead piglets
- Respiratory disease in finishing pigs

Hypotheses

- Fadeout of virus is possible
- Persistence of virus is likely to be influenced by:
- Reintroduction
- Isolation of purchased stock
- Recirculation by vertical and horizontal transmission

Aims

- Develop a population structure of a pig herd
- Use the dynamics of the pathogen to:
 - Investigate fadeout
 - Investigate persistence e.g. gilt purchasing practices
 - Investigate the effect of herd size

Model structure

Deterministic processes that happen every month:

- I = 24 week old finishers are slaughtered
- 2 = Rearing groups move each month (as a batch)
- 3 = Piglets are weaned into weaner pen
- 4 = 9 sows are culled every month (45% every year)
- Sows enter farrowing house at week 15 of gestation
- 6 = Sows move each month
- 7 = Weaned sows return to service pen
- 8 = 32 week old replacement gilts enter service pen
- 9 = Gilts move each month
- 10 = New gilts randomly selected from 20 week old finishers

Stochastic processes each day:

- Infection (density independent; transmission parameter 0.05)
- · Recovery (exponential with mean duration 18 days)
- Decay of maternal immunity (exponential with mean duration 6 weeks)
- Model run for 1000 days for 1000 iterations. 250 sow herd

Simulation results - Introduction of I viraemic 20 week old gilt

- In ~50% of cases, the introduction of virus into a separate gilt house does not reach the rearing herd approx. 300 days later (right)

Number of infectious gilts introduced

- Introducing more infectious gilts into 20 wk old gilt pen increases the median time to viral fadeout
- Proportion of herds that persisted for >1000 days ranged from 0.10 for 1 infectious gilt to 0.19 when 8 infectious gilts

Effect of sow numbers on the total number of infected pigs in the herd following the introduction of a viraemic gilt

• Increasing the herd size increases the number of infectious pigs in the herd and the probability of virus persisting for longer

Discussion

- · Following introduction of virus into the gilt group, isolating gilts from sows reduces the probability of virus reaching the rearing herd
- The number of infectious gilts introduced increases the median time to fadeout
- Increased herd size increases the probability of virus persisting in the herd
- Further work:
- Parameterise and validate the model using existing cross-sectional data
- Explore other control strategies
- Explore metapopulation dynamics

Acknowledgements

BBSRC and MLC/BPEX, Simon Creasey and Mike Tildesley, to all those who assisted in data collection and to all farmers who participated in the study