Risk assessment for the monitoring of antibiotic resistance in meat products.

Presi P¹, Stärk KDC², Stephan R³, Breidenbach E¹, Frey J⁴, Regula G¹

¹ Federal Veterinary Office, CH, ² Royal Veterinary College, UK, ³ Institute for Food Safety and Hygiene, CH, ⁴ Institute for Veterinary Microbiology, CH

OBJECTIVES

Compare the risk for consumers arising from the exposure to antibiotic resistant bacteria

(Campylobacter spp., E. coli, Enteroccocus spp.) at the retail level, from meat of:

- → four different types (poultry, pork, beef and veal)
- → distributed in four different product categories (fresh meat, frozen meat, raw and dried meat products and heat-treated meat products)

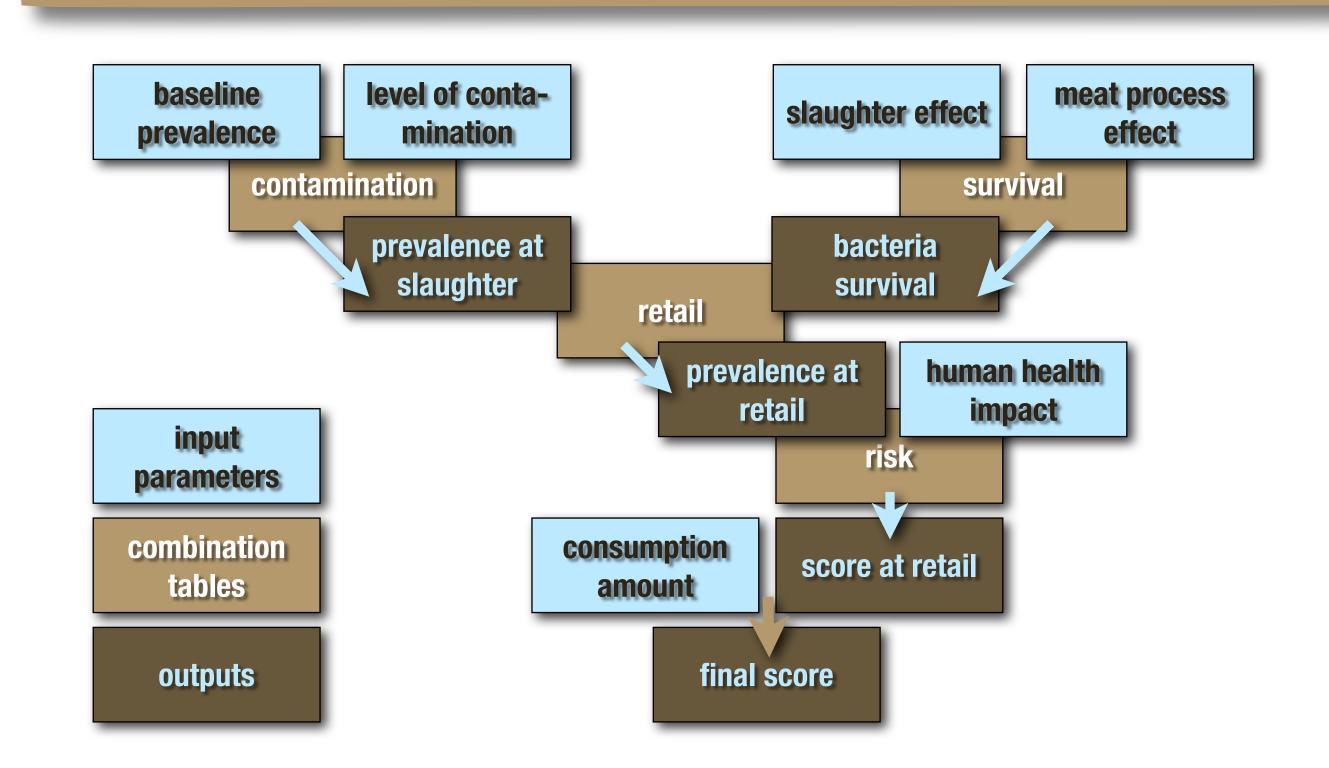
MATERIALS & METHODS

- → Score-based risk assessment
- → Change in prevalence from slaughter to retail
- → Input parameters: real data & expert opinion
- → Parameters defined with three categories (low, medium, high)
- → Combination of parameters through combination tables
- → Only high risk for the consumer were considered relevant for ranking the different meat products

EXAMPLE combination table used for the contamination at slaughter										
		LOW	MED	HIGH						
	LOW	low	low	low						
	MED	med	med	high						
	HIGH	high	high	high						

RESULTS

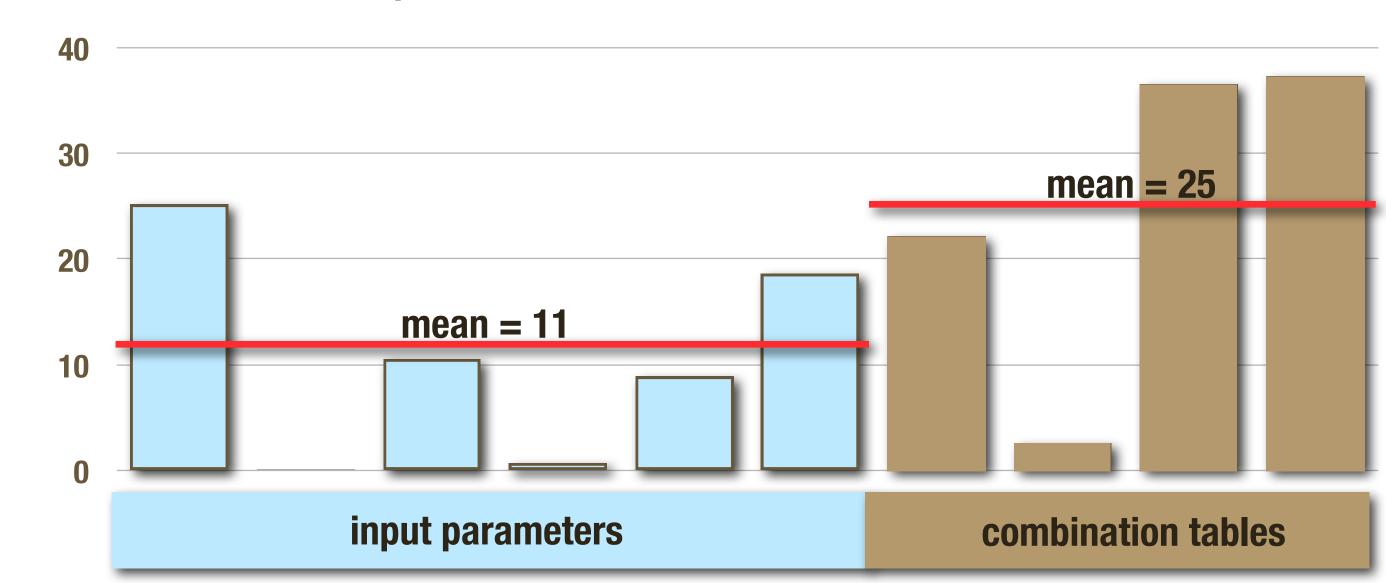
Relative **percentage of total risk** attributed to each type of product resulting in a **human health risk**. The sum of all risks was set to 100.


	FRESH			FROZEN		HEAT-TREATED		RAW & DRIED					
	HIGH	MED	LOW	HIGH	MED	LOW	HIGH	MED	LOW	HIGH	MED	LOW	TOTAL OF HIGH RISK
POULTRY	3.1	0.0	5.1	3.6	1.0	4.3	0.0	0.0	1.7	0.0	0.0	0.2	6.7
PORK	1.5	1.5	10.3	0.5	0.5	3.5	0.0	0.0	19.6	2.0	2.0	13.8	4.0
BEEF	0.0	0.0	9.8	0.0	0.0	1.8	0.0	0.0	2.0	0.4	0.2	5.6	0.4
VEAL	0.1	0.9	3.6	0.0	0.1	0.2	0.0	0.0	1.0	0.0	0.0	0.1	0.1
TOTAL	4.7	2.4	28.8	4.1	1.6	9.8	0	0	24.3	2.4	2.2	19.7	

- → Poultry (fresh & frozen meat) & pork (raw & dried meat products) are of higher risk for consumers
- → 11.2% of the 144 evaluated combinations of bacteria and antibiotic classified as high human health risk
- → 42% of high risk combination correspond to fresh meat

KEY POINTS OF THE RISK ASSESSMENT

- → Prevalence of contamination with resistant bacteria
- → Human health **consequences** of an infection with a specific bacteria resistant to a specific antimicrobial
- → Consumption volume of a specific product
- → Output of the assessment => proportion of risk attributed to each product for consumer for the 16 combination of meat products


STRUCTURE OF THE RISK ASSESSMENT

SENSITIVITY ANALYSIS

- → Illustrate the possibility of performing a SA on a non quantitative risk assessment
- → Assess how influential inputs parameters are on the output of the risk assessment
- → Assess the influence of combination tables on the output
- → 1009 combinations of parameters were tested
- → Modified output compared to original output
- → Rankings within high risk categories were compared

Percentage of mismatch between modified outputs and original outputs due to the modification of each parameter and combination tables.

CONCLUSIONS

- → The model presented here provided information for setting priorities in the management of the Swiss monitoring programme on antimicrobial resistance
- → The sensitivity analysis helped validating this model, thus assuring robustness of evidence-based decision making

