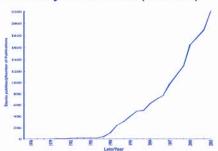
INVESTIGATION OF EFFECTIVENESS FOR CERTAIN TREATMENT IS A COMPLEX QUESTION - AN EXAMPLE WITH ENROFLOXACIN

Leon Ščuka, PhD DVM

Krka, d.d., Novo mesto, Slovenia; Veterinary Faculty, Ljubljana, Slovenia

ABSTRACT


to exactly specified clinical clientams. These reviews support the synthesis of best evidence for treatment or causalisationer of too emircular principal control of the co

Meta-analysis is the process of using statistical methods to review and combine results of different independent studies.

Combining
Detecting and investigating of differences
New cognitions (examples lidocaine, tamoxifen)

Systematic reviews are exact summaries of the best evidences related to exactly specified clinical dilemmas

Number of publications that used meta-analysis 1975 - 2003 (MEDLINE)

PROCEDURE OF META-ANALYSIS

- 1. Identify the problem, sources and inclusion criteria
- Positioning of trials
 Compilation of results and comparison with trial characteristics
- (analysis and explanation of results) and
- 4. Reporting results

WORKING GROUP

- Researchers (research field, acquainted with the problem)
- IT expert, bibliographer
- Biostatistics expert

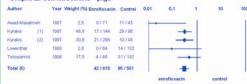
Differences between Narrative Reviews and Meta-analysis (Systematic Reviews)

Feature	Narrative Review	Meta-analysis		
		(Systematic Review)		
Question	Often broad in scope	Often a focused question		
Sources	Not usually specified,	Comprehensive sources		
and search	potentially biased	and explicit search strategy		
Selection	Not usually specified,	Criterion-based selection,		
	potentially biased	uniformly applied		
Appraisal	Variable	Rigorous critical appraisal		
Synthesis	Often a qualitative summary	Quantitative summary		
Inferences	Sometimes evidence-based	Usually evidence-based		

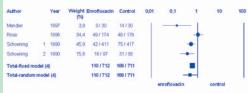
Meta-Analysis and Systematic Review for enrofloxacin

- 19 Meta-Analyses
- Systematic Review
- Pigs (110 studies), Poultry (60 studies) Cattle (67 studies):
- Introduction
- Comparison with other drugs
- Acumulation of knowledge

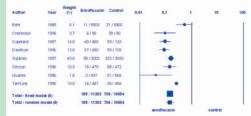
(literature data: for example: ecology, IQ, AIUC etc.)


- Graphical presentation: Mean with 95% confidence intervals
- (authors, year, odds ratios, total effect size) Homogeneity fixed, random model
- Weights: studies (e), total (m)
 Funnel plots (heterogeneity, dispersion of data) and sensitivity analysis In vitro susceptibility to enrofloxacin

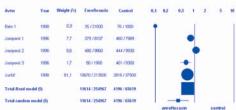
 - 19 meta-analyses (+ 7 estimations of odds ratios)


Author	Year	Weight (%)	Errofloxed	n Control	0,01	0,1	1	10	1
Glaswisching	1989	0,8	0 / 70	21744	1		10		
Herrerias	1995	12.2	24 / 55	31756			-		
Homedo	1988	0,4	0/5	171	-		-		
Homa	1994	6,3	11730	18 / 30			•		
Kobisch	1990	1,4	1 / 25	19 / 25		-			
Kolodziejczyk	1999	38,5	287 1030	125 / 1035					
Pommier	1998	19,1	20 / 170	35/166			•		
Rose	1995	12,0	10 / 173	26/378			-		
Smth	1991	3.5	8/32	127.18	- 8	-	-		
Wallgreen oralno	1998	5,0	4/32	43 / 64		•			
Walgreen parent.	1998	0,8	0 / 16	25 / 40			- 1		
Total-fixed model(11)		106 / 1639	354 / 1855		. 1			
Total-random mode	el(11)		106 / 1639	354 / 1855		-	23		

= 43.1, df (Q) = 10, P = 0.003


Graph. E. coli infections - pigs

4.83, df (Q) = 4, P = 0.31 Graph. MMA Syndrome

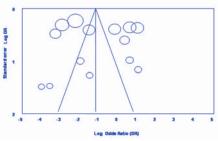


Graph. E.coli infections in poultry (broilers)

Q = 27.50: df (Q) = 7: P = 0.003

Graph, Respiratory infections in poultry

Graph. Mycoplasmal infections in poultry


Author	Year	Enrofloxacin	Control	0,5	1
Cerruti-Sola	1989	268 / 144750	363 / 141000		2 p
Tordan	1989	517150	36/100	100000	•
Jordan	1998	1/40	37/320	-	
Ocampo in Sumano	1998	1647 / 16500	12567 16500		
Sumano .	1998	1008 / 49800	1647 / 49800		_
Total - fixed model (5)		2975 / 211240	3339 / 207720	1	
Total – random model (5)		2975 / 211240	3339 / 207720	-	_
				enrofloxaci	n cor

Q = 212.2; (Q) = 4; P < 0.001

Graph, Pasteurelosis (Turkeys)

In Vitro susceptibility of mastitis pathogens to enrofloxacin

Bacteria	% resistant strains (resistant/all)		
S. aureus	6,9 % (73/1059)		
Streptococcus sp.	28,3 % (127/448)		
Staphylococcus sp.	2,8 % (1/351)		
E. coli	1,8 % (3/1695)		
Coagulasa negative Staphylococcus	0,2 % (2/883)		
S. agalactiae, S. dysgalactiae, S. uberis	10,5 % (12/114)		
Nocardia asteroides	0,0 % (0/371)		
Actinomyces pyogenes	0,0 % (0/20)		
Corynebacterium bovis	0,0 % (0/20)		

CONCLUSIONS

eness for certain treatment is a complex question - an example with enrofloxacin

1. Meta-analysis revealed that enrofloxacin is undoubtedly effective in the 1. Meta-analysis revealed that enrofloxacin is undoubtedly effective in the treatment of respiratory infections in pigs, poultry and cattle, in the treatment of E. coli infections, salmonellosis and mycoplasmosis in pigs and poultry, in MMA syndrome, streptococcal and urinary tract infections in pigs, in pasteurellosis in turkeys, infectious coryza, staphylococcosis in poultry, as well as in R. anatipestifier infections in ducks; insignificant advantage of enrofloxacin over the control drug was observed in the treatment of Glässer's disease in pigs and of endometrilis in cattle, and, in mycoplasmal pneumonia in goats, whereas, to confirm high efficacy of enrofloxacin in E. coli infections, salmonellosis and mycoplasmoss in cattle, credible and accurate clinical trials need to be performed, which is particularly important in view of numerous contradictions associated with the treatment of mastilis with particularistic. associated with the treatment of mastitis with enrofloxacin

2. The majority of tasks necessary for the investigator during the process of 2. The majority of tasks necessary for the investigator during the process of meta-analysis were successfully performed: descriptive survey, guidelines for further research, diagnostic survey and transfer of our findings into practice. We reviewed the available studies and could assess sufficiently and insufficiently analysed parameters. Some studies revealed statistically significant results and some not. It occurred in some cases that studies that lacked significant results, due their weight, had a greater impact on the analysis than those with significant results. It was this part of our research that revealed one of the greatest difference between meta-analysis and the narrative comparison of the literature. Additionally the homogeneity of studies was graphically evaluated with funnel plots.

3. Our findings can be considered useful for investigators, doctors of veterinary medicine in practice and for the breeders, as well as for the manufacturers of veterinary medicines and governmental authorities. Our work has a great economic impact too, since it offers an overall survey of the problem and provides guidelines for further research of the topic.