Bayesian Methods for Sample Size Calculation

Hans Peter Stüger, Klemens Fuchs, Peter Much
AGES - Austrian Agency for Health \& Food Safety

Abstract: Sample sizes for estimating proportions of agents present or antimicrobial resistance in study populations can be reduced with a Bayesian approach. Historical information out of former monitoring results was used to calculate the necessary sample size.

What's the problem? The proportion p of resistant isolates against a set of antimicrobials has to estimated for several bacterial- and animals species by an annual monitoring program. To reduce costs by lower sample sizes results from previous years should be used.

2a. How to build in the weighted information? => conjugate prior function: Beta $\left(a_{0}, b_{0}\right)$ Beta coefficients are equivalent to a (virtual) sample of size $n_{0}=a_{0}+b_{0}-2$ with $a_{0}-1$ positive cases and $b_{0}-1$ failures.

1 b.
Prior information: Campylobacter spp. in poultry resistant isolates 2004: $x_{04}=22 \quad\left(n_{04}=151\right)$ 2005: $x_{05}=33 \quad\left(n_{05}=205\right)$

How to weight this information?
=> older information is less weighted
2004: 25\% \qquad 2005: 50\%

2b.
$\mathrm{a}_{0}=0.25 \cdot \mathrm{x}_{04}+0.5 \cdot \mathrm{x}_{05}+1$
$\mathrm{b}_{0}=0.25 \cdot\left(\mathrm{n}_{04}-\mathrm{x}_{04}\right)+0.5 \cdot \cdot\left(\mathrm{n}_{05}-\mathrm{x}_{05}\right)+1$
$=>$ Beta $(23 ; 119)$ as prior function
3. How to determine optimal sample size? How big has n to be to get an
a) average coverage AC for a pre-specified interval length \mathbf{d}_{0}, or
b) average length AL for a pre-specified coverage cov $_{0}$?
$\mathrm{AC}(\mathrm{n})=\operatorname{Lcov}(\mathrm{x}) \cdot \mathrm{m}(\mathrm{x}) \ldots . \mathrm{x}=0, \ldots, \mathrm{n}$
$A L(n)=\Sigma d(x) \cdot m(x)$
$\mathrm{m}(\mathrm{x})$........marginal probability

Average length for $\mathrm{Cov}_{0}=0.95$

5. Results: $\quad n_{\text {opt }}=65$

Classical approach: confidence interval (CI) of 0.15 ± 0.05 (95%) requires $\mathrm{n}=196$
A minimum sample size of $n=45$ was defined for a Cl of 0.5 ± 0.15 (95%) out of sample alone.

Conclusions: Bayesian approach

- allows incorporation of historical knowledge,
- reduces optimal sample sizes (and costs!) with equal precision and confidence level

