\*arianna.comin@sva.se

Arianna Comin

# Interlaboratory diagnostic test evaluation using Bayesian latent class models

Knowing diagnostic test accuracy is essential when using test results to infer the presence,

### AIM

Proof of concept for cost-effective

A. Comin\*, V. Ahlberg, E. de Freitas Costa, M. Counotte, A. Dekker, A. Asfor, A. Dastjerdi, M. Arnold, R. Jinks, G. Koukam, S. Valas, M.J. Denwood

## CHALLENGES

Lack of gold standard test  $\longrightarrow$ 

# SOLUTIONS

Bayesian latent class models

prevalence, or absence of a disease in a population

diagnostic test evaluation

- Budget constraints
- Lack of positive samples  $\longrightarrow$  Samples from multiple countries
  - Inter-laboratory evaluation

CASE **STUDIES** Serological detection of **BVD** & **IBR** 

### LAB ANALYSES



The Bayesian latent class model (BLCM) combines the test results in each population and infers the most likely true value for each sample, i.e. the latent status.

- 2 diseases
- 4 countries
- **4** laboratories
- 6 epidemiologists
- 6 laboratory experts
- **7** serological tests for IBR
- 8 serological tests for BVD
- **1000** samples analysed in total

## **STUDY DESIGN**

- Sample sharing between labs
- Each lab applied their own routine diagnostic test(s)
- Joint data analysis using BLCM

# CONCLUSIONS

- Cost-effective approach to diagnostic test evaluation  $\rightarrow$  especially valuable for routine diagnostics
- Useful insights for the labs and



Example of population-specific estimates (Svanovir\_SVA)

## **OUTCOMES**

- Diagnostic sensitivity and specificity of ELISA tests for detection of Bovine Viral Diarrhoea (BVD) and Infectious Bovine Rhinotracheitis (IBR)
- Population-specific accuracy and ROC curves for cut-off optimization
- R code for inter-laboratory diagnostic test evaluation using BLCM:
- → algorithm for **optimal sample** allocation among populations

### tools for test optimization

- Applying several tests entails:
  - correlations that increase model complexity
  - possibility to remove tests and get post hoc estimates
- Requires deep understanding of tests, populations and underlying latent status

| Population | Median<br>specificity | Credible<br>interval |
|------------|-----------------------|----------------------|
| SE         | 0.995                 | [0.977 – 1.000]      |
| NL         | 0.345                 | [0.198 - 0.509]      |
| UK         | 0.916                 | [0.780 – 0.997]      |
| FR         | 0.988                 | [0.948 - 1.000]      |
| Combined   | 0.903                 | [0.863 - 0.938]      |

- → methods for **assessing the empirical** fit of Hui-Walter models
- → post hoc accuracy estimates for tests

that were excluded from the model









