

Animal & Plant Health Agency

Echinococcus multilocularis surveillance in Great Britain: an assessment of the costs and effectiveness of different diagnostic tests

Risk Analysis & Modelling

Department of Epidemiological Sciences, APHA, Weybridge, UK, Sebastian.Dohne@apha.gov.uk

From the work of Samantha Rivers, Richard Budgey, Verity Horigan, Robin Simons, Alex Kent and Graham Smith

The parasitic tapeworm *Echinococcus multilocularis* is the causative agent of alveolar echinococcosis, which can affect both dogs and humans. Treatment for AE is complex, often requiring surgery in addition to expensive lifelong anthelmintics.

Echinococcus multilocularis can be found across Europe, however, Great Britain currently holds disease-free status.

In the life cycle of *Echinococcus multilocularis* (EM), the intermediate host (typically microtine rodents) ingest eggs which develop and enter the liver from the small intestine, maturing into metacestodes. Definitive hosts (primarily foxes, dogs and cats) consume the intermediate hosts, the metacestodes mature in the upper intestine and start producing eggs, which are excreted in faeces, continuing the cycle. If humans ingest the eggs, metacestode development can occur in the liver,

causing alveolar echinococcosis (AE) and while dogs usually act as definitive hosts like foxes, infection with alveolar echinococcosis can also occur in animals.

Great Britain (GB) is EM free but risk of incursion exists from improperly checked animals, such as from pets, or from wild animals introduced (e.g for rewilding). Should the pathogen enter the country the estimated 357,000 red foxes serve as a potential wildlife reservoir.

The current EM surveillance programme in GB involves annual testing of faeces from red fox carcasses collected from across GB, using an egg sieving/flotation and PCR diagnostic method. This screens for the presence of EM in order to provide proof of freedom from disease in the red fox population at 1% prevalence with 95% confidence. Preventative measures include anthelmintic treatment required for any dogs entering the country.

The purpose of this analysis is to showcase the best surveillance option to stakeholders by utilising a model to estimate the number of years until detection (YTD) of EM for several diagnostic tests, and to provide a comparison of the economic costs or benefits of alternative diagnostic tests compared to the current egg sieving/flotation method. The YTD was estimated based on results of a mathematical simulation model that predicted the time until first detection in a red fox by simulating population biology and disease transmission in a definitive red fox host population and intermediate field vole host population.

Methods

Diagnostic tests compared

- SVT/EGG FLOTATION (Current approach)
- IST (Intestinal Scraping technique)
- SCT (Sedimentation and

Parameterisation and economic analysis

The economic analysis portion of this work used a modified cost-benefit approach, collating data from various parameters broadly divided into costs and benefits. The data collected included:

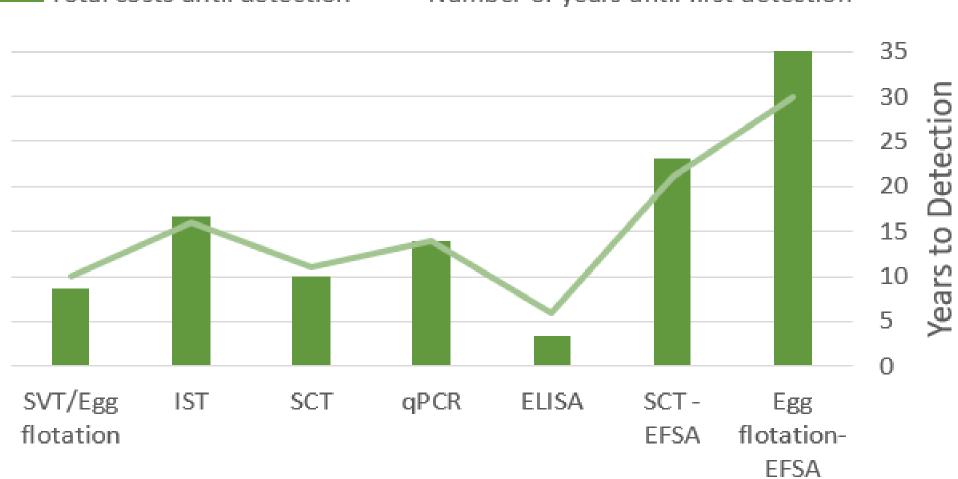
- Annual cost of surveillance
- Cost of required worming
- Cost of treatment (humans and dogs)
- Estimated annual case number (humans and dogs)

How spread was modelled

- Introduction of the disease was simulated in a single fox territory in the centre of the arena.
- Carcass collection was simulated
- Surveillance data replayed at random after historical data ran out.

- Counting Technique)
- qPCR
- ELISA
- SCT-EFSA*

*SCT parameterised using the lower test sensitivity recommended by EFSA


These parameters then combined with a modelled output of years until detection for each of the diagnostic tests to produce an overall financial cost to first detection.

Subsequently, scenario analysis estimated the number of years required to recoup the total surveillance costs (to first detection) varying the cost of human treatment, annual incidence, and additional deworming costs.

The percentage difference in costs was calculated by multiplying the cost of surveillance and national deworming of dogs by YTD and adding the estimated value of incurred healthcare costs from the parasite pre-detection.

- The surveillance program is convenience-based. Variation in number of carcasses collected at each location
- Output data was simulated for 50 years and measured monthly.
- A range of prevalence rates between (0-~40%) was included in the simulation experiment, to reflect differences in the local host population and carcass collection time.
- YTD was then calculated using estimated sample number required to confirm prevalence, test sensitivity and test throughput.

Results

Diagnostic Test

The ELISA is the most effective test, with the current GB approach coming second, but why?

Pros:

- High test sensitivity
- High throughput
- Less costly at point of use
- **Detection of pre-patent infections**

Cons

- Lower specificity

Test	Number of years until first detection	No. of additional years to detection compared to current test	Percentage change
SVT/Egg flotation	10	0	0.00
IST	16	+6	113.77
SCT	11	+1	19.00
qPCR	14	+4	75.88
ELISA	6	-4	-75.88
SCT - EFSA	21	+11	208.64

Total costs until detection — Number of years until first detection

Figure 1: Number of years until detection (line) and total cost of surveillance up to the year of detection (bars), for each diagnostic test assessed.

No commercial kit available so set up and validation may be expensive.

Conclusion

The results indicate that the ELISA may be a more effective diagnostic test for surveillance of EM in Great Britain as well as a potentially more economic option. The results also show current approach remains effective compared to other diagnostic tests. However, there may be caveats to this statement such as kit availability and additional costs such as: cost of infection in other animals and cost of the disease as well as comorbities among others, which fall out of the scope of this assessment.

REFERENCES

- BRITTA LUNDSTRÖM-STADELMANN, R. R., DOMINIC RITLER, RAPHAEL ZURBRIGGEN, ANDREW HEMPHILL, 2019. The importance of being parasiticidal... an update on drug development for the treatment of alveolar echinococcosis. Food and Waterborne Parasitology, 15, e00040.
- KOLAPO, T. U., HAY, A., GESY, K. M., FREY, C. F., ROTHENBURGER, J. L., JOFFE, D. J., SPOTSWOOD, T., HUANG, Y., MASSOLO, A. & PEREGRINE, A. S. 2023. Canine alveolar echinococcosis: an emerging and costly introduced problem in North America. *Transboundary and Emerging Diseases*, 2023.
- ROMIG, T., KRATZER, W., KIMMIG, P., FROSCH, M., GAUS, W., FLEGEL, W. A., GOTTSTEIN, B., LUCIUS, R., BECKH, K. & KERN, P. 1999. An epidemiologic survey of human alveolar echinococcosis in southwestern Germany. Römerstein Study Group. Am J Trop Med Hyg, 61, 566-73
- TORGERSON, P. R., SCHWEIGER, A., DEPLAZES, P., POHAR, M., REICHEN, J., AMMANN, R. W., TARR, P. E., HALKIK, N. & MÜLLHAUPT, B. 2008. Alveolar echinococcosis: from a deadly disease to a wellcontrolled infection. Relative survival and economic analysis in Switzerland over the last 35 years. Journal of hepatology, 49, 72-77
- MATHEWS, F. K., L.M; GURNELL, J; HARROWER, C. A; MCDONALD, R.A; SHORE, R.F; 2018. A Review of the Population and Conservation Status of British Mammals. A report by the Mammal Society under contract to Natural England, Natural Resources Wales and Scottish Natural Heritage. Natural England: The Mammal Society.
- SAKAI, H., NONAKA, N., YAGI, K., OKU, Y. & KAMIYA, M. 1998. Coproantigen detection in a survey of Echinococcus multilocularis infection among red foxes, Vulpes vulpes schrencki, in Hokkaido, Japan. Journal of veterinary medical science, 60, 639-641
- BUDGEY, R., LEARMOUNT, J. & SMITH, G. C. 2017. Simulating control of a focal wildlife outbreak of Echinococcus multilocularis. Vet Parasitol, 237, 47-56.
- BAGÓ, F., HOELZL, F., KNAUER, F., KÜBBER-HEISS, A. & SMITH, S. 2021. Rapid and Reliable Detection of Echinococcus multilocularis from Faeces Using Droplet Digital PCR. Acta *Parasitologica,* 66, 553-559.
- ECKERT, J., GEMMELL, M.A., MESLIN, F.X., PAWLOWSKI, Z.S 2001. WHO/OIE manual on echinococcosis in humans and animals: a public health problem of global concern, World Organisation for Animal Health.
- DINKEL, A., NICKISCH-ROSENEGK, M. V., BILGER, B., MERLI, M., LUCIUS, R. & ROMIG, T. 1998. Detection of <i>Echinococcus multilocularis</i>i>in the Definitive Host: Coprodiagnosis by PCR as an Alternative to Necropsy. Journal of Clinical Microbiology, 36, 1871-1876
- Rivers, S., Kochanowski, M., Stolarek, A., Zietek-Barszcz, A., Horigan, V., Kent, A.J. and Dewar, R., 2023. A framework for the design, implementation, and evaluation of output-based surveillance systems against zoonotic threats. Frontiers in Public Health, 11, p.1129776.

Sebastian Dohne

Risk Analyst - Biomathematics and Risk Research Group

Department of Epidemiological Sciences

Animal Plant Health Agency

Department of Environment Food and Rural Affairs

United Kingdom