Simulation of foot-and-mouth disease spread and effects of mitigation strategies to support veterinary contingency planning in Denmark

Beate Conrady¹, Sten Mortensen², Søren Saxmose Nielsen¹, Hans Houe¹, Francisco Fernando Calvo-Artavia², Johanne Ellis-Iversen¹, Anette Boklund¹

¹Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark

² Danish Veterinary and Food Administration, 2600 Glostrup, Denmark

Background

- The spread and control of foot-and-mouth disease (FMD) is complex with multiple transmission pathways and several host species
- Outbreaks of FMD have serious economic and social consequences on the national livestock industry (Export value Denmark: 21 Mio. EUR/day of FMD-susceptible animals/products)
- The introduction of FMD into Denmark still represents a risk (several outbreaks in Europe in the past decades)
- The last FMD outbreak in Denmark was in 1983
- Preparation for a possible entry of FMD is essential for authorities

Epidemiological model: EuFMDiS

- Spatial--temporal spread within and between herds
- Epidemic initiated in 1,000 index herds per species (1 iteration per herd):
- Scenario a): 4 regions and 3 species covering all productions including herds without outgoing movements to other farms
- Scenario b): whole DK and one specific production system per species (e.g. dairy, weaner herds) with large number of movements

Aim

To support veterinary authorities in terms of an effective outbreak response to FMD in Denmark by

- Simulating epidemics in various regions, species, and livestock production systems
 - Comparing the epidemiological and economic effectiveness of varying mitigation strategies depending on the introduction scenarios
 - Testing the sensitivity of the model in terms of different detection periods and various national resources for an outbreak response

• 14 mitigation strategies* (e.g. pre-empty culling, larger zones, protective and suppressive vaccination)

Economic model

Fig.1: Livestock density map (n=1,000 livestock) per 10 km² stratified by North Denmark, Central Denmark, South Denmark and Zealand/Capital (represent the 4 regions of Scenario a).

Fig.2: Visualization of the simulation of an FMD-Outbreak in Denmark. Spread between herds in daily time steps through direct contacts, market/saleyard spread, indirect contacts, airborne spread, and local spread.

Results

- No significant benefits in terms of number of infected farms, epidemic control duration, and total economic costs, when additional mitigation strategies*
 were implemented on top of basic control strategies (i.e. 3-day standstill period for all livestock movements, 3-km PZ, 10-km SZ, 14-day trace window)
- The choice of index herd (comparing Scenario a and b), resources for outbreak control and detection time significantly influenced the course of an epidemic
- An inadequacy of resources to undertake the control was detected during the simulations but **doubling of resources will reduce the number of infected farms and total economic losses** (up to 15.6% fewer farms were infected and 15.4% lower total economic losses, on average)
- Pre-emptive culling of dangerous contact herds to infected herds based on tracing without any confirmation of infections would be the most beneficial strategy in case of a late discovery of FMD (i.e. detection day 28 instead of day 21 but with currently available resources for outbreak response)

Further details: Conrady, B., Mortensen, S., Nielsen, S. S., Houe, H., Calvo Artavia, F. F., Ellis-Iversen, J., & Boklund, A. (2023): Simulation of foot-and-mouth disease spread and effects of mitigation strategies to support veterinary contingency planning in Denmark (Paper submitted)