USING CONTACT TRACING DATA TO
MEASURE EPIDEMIC DYNAMICS

NIVERSITY Ol

RWICK

WA

[Centre for Research in Statisical Methodology, UnivgreitWarwick]

| | ntroduction I

Numerical methods are used increasingly to advise on dquficy
for infectious disease epidemics. However, for these agghres to be
truely quantitative, it is important to use observed data&ke mea-
surements on the dynamics of the outbreak. Once this is dbee,
results can be used to make predictions on how the epidengistm
unfold, and hence provide information for decisions on oo be
made.

Often, models are contructed to reflect assumptions abeyidpu-
lation structure. Individual-level covariates are thelated, via pa-
rameters, to infection rate. Inference on these model patensithen
provides the necessary information to drive epidemic satnorhs for
prediction purposes.

Here we show that the acquisition of epidemic contact tgadata
serves to augment the information contained in these Giearin
order to make more accurate epidemic predictions.

Contact Tracing Data |

Contact Tracing Data (CTD) is typically collected from a mgwae-
tected case during an epidemic. It comprises of a list of known-
tacts with other individuals during a specified period ofdiprior
to the detection - theontact tracing window. This has the aim of
Identifying further individuals who might have been infedt(but are
currently undetected), and also helps in reconstructiag#th of the
epidemic through the population.

Unobserved contacts Traced contacts

>l >
> -

A

T" | D Time

Epidemiological event

Contact tracing window

- Contact event

Figure 2: The timing of events leading up to an infected imblial’s

(ie farm’s) detectionD). Contacts occur at random intervals, and r¢- This model is therefore constructed to represefectious pressure

sult in an infection with some probabiliyy(provided they have orig-
Inated from an infected individual). Contact events witlma contact
tracing window (intervalT“, N)) are known (yellow area), whereag
those which occur beforé“ are only known to occur with a given
rate ().

The Model - Contact Tracing |

To construct a model, we consider contacts in terms of agiai in-

dividual 5. If CTD were avalilable for all time, we could assume that

the number of contacts originating at infected individualsd arriv-

INng at a suceptible before it becomes infected, follows a negative

binomial distribution:

whereC; (1 j_) IS the set opotentiallyinfectious contacts arriving at
before one results in an infection (all other contacts bstagstically
Irrelevant).

| The Moded - Contact Rates I

In the case where contact tracingnst available, information on

the rate of contacts can be used In the classic stochastic epidemic
In our previous work, we have adopted a continuous tim For this study, a simulated epidemic was used since no $izeab

setup.
SINR model in which individuals progress according to:

Susceptible— Infected— Notified — Removed |

for which the likelihood is:

FINRILO.X) = T] (51 -

j=Llj#k

7;(t) represents the rate of infections (infectious pressumjirag
at individual 5 at timet, typically a function of the covariates ang
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parameters as shown in the next sectidh;R are the vectors of no-
tification (ie detection) and removal times respectivéjry;is the time
just beforej Is Infected;T,,,, Is the analysis timesy, Is the set of
susceptibles at the analysis time.

| Ratesv CTD I

Atfirst glance, it appears from the two equations above Htatinfor-
mation and CTD are incompatible since they are differentsuess
- rates can assume any non-negative value, whereas coaithes
happen or not.

However, it can be shown that taking an expectation over timeaer
of contacts occurring in the unknown periods gives the iltagd for
the continuous time stochastic epidemic mad@&y partitioning the
likelihood into periods of unknown and observed contacigrence
can be made jointly using both rate and contact tracing mé&ion.

Example |

These results are from work we have done to provide an indferand
risk-prediction system for a potential outbreak of Highbtikbgenic
Avian Influenza in the British Poultry Industfy The Great Britain
Poultry Register identifies the major production-type preéson a

farm j (s;), together with OSGB location data enabling the calcp-

lation of Euclidean distance between farivead; (p;;).

In addition, Network Data obtained by questionnaire idexgithree
matrices defining contact networks:

e Feedmills ¢f) - contactrate information for feed-lorry visits
(median 1.1 lorry visits per farm per week).

o SIaughterhousev@H)) - contactrate information for abattoir-
lorry visits (median 0.18 visits per farm per week).

e Company ¢¢1) - binary (0 or 1) information on business relationf

ships between farms.

on susceptible farm from infected farms:

F P _ y
Tj(t) = Z Ry {TijMpl + TZS]-HPQ + Cg- 31 + Boe ¥(pis)
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Figure 3: The decrease in posterior variance achieved bgddgion
of contact tracing data, supplementary to static netwogktfency
data

| When isCTD useful? I

Our early results suggest that using contact tracing datalysuseful
when contact frequencies are low. To see this, we considertine
variance of the parameter estimate vary in relation to timeaw rate
T.

Figure 4 shows how this variance varies in both the binonuatact
tracing model (where contacts are known), and the PoissoceBs
model (where only contact rate is known). For all values-ofhe
binomial model gives a smaller variance. However, thissgddhce Is
only appreciable for small values of in this case for below about
3.

ie€Z(t)
g | — Expon_ential
Parametersto be estimated: Lo | —— Binomial
e 77 - a vector of production-type susceptibilities. % <
> 3
e p1, po - probabilities of an infection occurringiventhat a contact .
occurs betweenand; for Feedmill and Slaughterhouse contacts S 7
respectively. o | /\
© | | | | |
e 31 - the Iinfection rate between two farms connected by a company 2 4 6 8 10
link. r

e 5, ¢ - the spatial infection rate, and distance decay between two

farmsp;; apart.

Sincerf™ andr° are rate matrices, we can incorporate contdct

tracing data and investigate how its addition improves tie€ipion
of our parameter inference gn andp-.

| Results I

break of HPAI has yet occurred in Britain. Contact tracintpdaas
simulated alongside, with a nominal contact tracing windmgin-
ning 21 days before case detection, and assuming perfetator)
tracing data collection. Parameter estimation was perddromsing
a Bayesian approach with Reversible Jump MCM®th with and
without contact tracing data.

Here we present our results fpr andps, having used Uniforno, 1]
priors for both parameters. The true values (arbitrarilgsen for
demonstration purposes) used to simulate the data are shawn
lation to the posterior estimates. The graphs indicate gbaterior
variance is significantly reduced by the incorporation oftect trac-
Ing data into the analysis, thus enabling more efficientipatar es-
timation.

Figure 4: The variance of the binomial and exponential modsla
function of the contact rate using a toy example of simple binomial
and exponential models whepe= 0.5.

| Conclusions and Recommendations I

Our results suggest that using CTD as an adjunct to statarcie
data is a useful aid to providing accurate parameter essfat epi-
demic prediction purposes. When contacts between indalsdare
relatively rare events, even small amounts of contactritpiciforma-
tion are valuable in providing large improvements in pradecun-
certainty. Since “static” contact rate data is likely to iba through-
out an epidemic as control policy and farming behavioursngha
the information that CTD gives will be vital in reducing theher-
ent inaccuracies in static data. Contact tracing data ditberefore
be considered an important part of modelling efforts dudrsgpase
outbreaks.
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