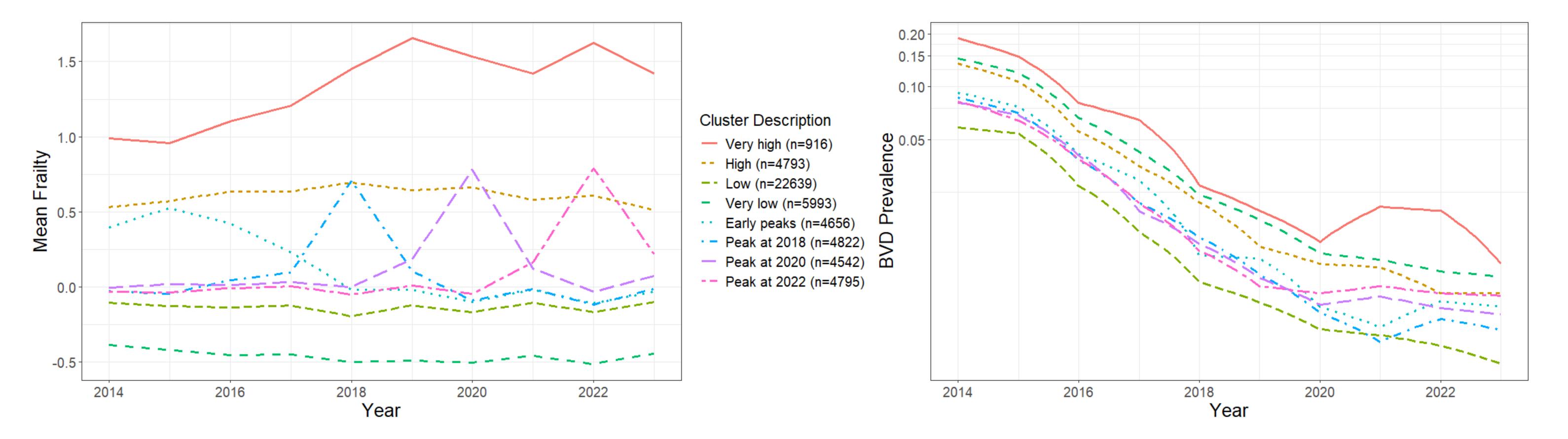
Unlocking Surveillance Signals: Identifying Herd Health Risks Through Calf Mortality Trends

University

An Roinn Talmhaíochta, **Bia agus Mara** Department of Agriculture, Food and the Marine


Jaden M. Carlson¹, T. Brendan Murphy², Luke O'Grady¹, Jonas Brock³, David A. Graham³, Maria P. Guelbenzu-Gonzalo³, Guy McGrath⁴, Jamie A. Tratalos⁴, Rafael de Andrade Moral⁵, Niamh Mimnagh⁵, Damien J. Barrett⁶, Elizabeth A. Lane⁶, Conor G. McAloon^{1,4}

STAGE 1: Estimate annual calf mortality hazard in Irish cattle herds

Annual Cox survival models were created for calves born in Ireland in 2014-2023 and right-censored at 100 days. Fixed effects were sex and breed type (beef, dairy, crossbred), while herd was included as a random (frailty) effect.

STAGE 2: Identify temporal patterns and relate to BVD prevalence

K-means clustering was used on the extracted frailty estimates for each herd and each year. The mean frailty and log BVD prevalence was plotted for the eight distinct clusters.

STAGE 3: Explore mortality risk as indicator of BVD (re-)emergence

Flagged if the current frailty was greater than:

- 1. 5yr mean + (2.33 * 5y SD)
- 2. 5yr mean + 0.5
- 3. 1yr mean + 0.5
- 0.5 4.

Flag	Odds Ratio	p-value	Sensitivity	Specificity
1	1.25	0.0035	10.6%	91.4%
2	1.60	<0.001	17.9%	88.1%
3	1.45	<0.001	20.8%	84.7%
4	1.83	<0.001	24.0%	85.3%

Tracking herd-level calf mortality serves as a detection mechanism for potential disease incursions and animal welfare concerns. This approach will enhance broader syndromic surveillance systems in regions working to eliminate specific livestock diseases and maintain disease-free status.

¹School of Veterinary Medicine, University College Dublin, Dublin, Ireland ²School of Mathematics and Statistics, University College Dublin, Dublin, Ireland ³Animal Health Ireland, Carrick-on-Shannon, Ireland

⁴Centre for Veterinary Epidemiology and Risk Analysis, University College Dublin, Dublin, Ireland

⁵Department of Mathematics and Statistics, Maynooth University, Maynooth, Ireland

⁶Department of Agriculture, Food and the Marine, Dublin, Ireland

This study was conducted as part of the DETER-BVD project funded by the Irish Department of Agriculture Food and Marine (2022PSS106).

Contact: jaden.carlson@ucd.ie