

Predicting spatial prevalence of tick pathogens in Northern Europe using satellite imagery

Ana Carolina Cuellar ¹, Kirstine Klitgaard Schou¹, Sara Moutailler², Patrick Fach², Sabine Delannoy², Fimme van der Wal³, Aline de Koeier³, Jan Chirico⁴, Anna Aspán⁴, Mikael Juremalm⁴, Karen Mansfield⁵, Paul Phipps⁵, Tony Fooks⁵ and Rene Bødker¹

¹ National Veterinary Institute- Technical University of Denmark, Section of Epidemiology, ² French Agency for Food, Environmental and Occupational Health & Safety- France, ³Central Veterinarian Institute-Wageningen University- Netherlands ⁴National Veterinary Institute- Sweden, ⁵Animal and Plant Health Agency (APHA) - United Kingdom

Background

- Spatial distribution of ticks and the pathogens they transmit is a key tool to assess human risk for tick borne diseases
- Tick pathogens are related to the presence of suitable hosts which depend on environmental factors
- We hypothesis therefore that the spatial prevalence can be modelled using predictors variables obtained from Earth Observation satellites (Big Data).

Objectives

- To model the probability of presence of different ticks pathogens in five European countries using environmental variables extracted from satellite imagery
- To map the probability of presence of ticks pathogens
- To analyze if the probability of presence its correlated to the ticks pathogen prevalence

Methods

Data collection: pools of 25 Ixodes ricinus

nymphs from 13 sites (England, France,

Netherlands, Denmark, Sweden)

Observed prevalence of tick pathogens

Probability of presence map

Environmental predictors from satellite imagery

Model validation: Jackknife

Results

The model was significant for 2/7 of the species.

Candidatus Neoehrlichia mikerensis

Borrelia garinii

Observed Prevalence Probability of presence

Conclusion

- Pathogen prevalence differed between sites
- Observed prevalences fit the environmental data
- It is possible to predict and model spatial variation in prevalence of some tick-borne pathogens

DTU VET National Veterinary Institute Section for Epidemiology

Corresponding author: **Ana Carolina Cuellar**

PhD student

Phone: +45 71 61 98 22

Email: anacu@vet.dtu.dk

