

Time series data analysis to predict the status of mastitis in dairy cows by applying machine learning models to automated milking systems data

Muhammad N Dharejo ^{1*}, Olivier Kashongwe ^{2, 3}, Thomas Amon ^{2, 4}, Tina Kabelitz ², Lukas Minoque ², Marcus G Doherr ¹ ¹ Institute for Veterinary Epidemiology & Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, ² Department of Sensors and Modelling, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), ³ Joint-Lab Artificial Intelligence and Data Science, University Osnabrück, ⁴ Institute for Animal Hygiene and Environmental Health, School of Veterinary Medicine, Freie Universität Berlin

2

Introduction & Aims

- Mastitis is a significant disease affecting dairy cows, leading to economic losses and welfare concerns¹.
- Traditional detection methods rely on manual inspections, which are labor-intensive².
- Automated Milking Systems (AMS) generate large datasets that can be leveraged using Machine Learning (ML) for early mastitis prediction³.
- This study applies ML techniques to AMS data to predict mastitis occurrence: (i) one day prior and (ii) on the day of mastitis observation.

Results

3.1 Prediction One Day Before Mastitis Observation

Performance Metrics:

- Accuracy: 0.80 0.90
- Sensitivity: 0.64 0.78
- Specificity: **0.80 0.90**

Area under curve: 0.80 - 0.84

Figure 1: ML scores for predicting mastitis one day prior.

Methods

Data Collection:

- AMS data from two dairy farms in Germany (Brandenburg & Saxony) covering four years (2019-2022).
- [。] 2.73 million daily milking records from 1790 cows.

Variables:

- Seven predictor variables: electrical conductivity, somatic cell count, milk yield, milking flow, milk temperature, fat content, and protein content.
- 。Outcome variable: Mastitis events recorded as positive upon veterinary treatment.

ML Models Applied:

1. Logistic Regression (LR) 2. Support Vector Machine (SVM) 3. Decision Tree (DT)

4. Random Forest (RF) 5. Gradient Boosting (GB) 6. Multi-Layer Perceptron (MLP)

Preprocessing & Model Training:

 Data cleaning, feature engineering, and transformation to autoregressive time series format.

Best Performing Model:

- SVM (highest accuracy & specificity)
- MLP (highest sensitivity)

LR & RF (highest AUC)

Figure 2: AUC scores for predicting mastitis one day prior.

3.2 Prediction on the Day of Mastitis Observation

Performance Metrics:

- Accuracy: 0.84 0.93
- Sensitivity: 0.76 0.91
- Specificity: **0.84 0.93**

Area under curve: 0.92 – 0.95

- Synthetic Minority Oversampling Technique (SMOTE) used for class balance.
- 。GridSearchCV for hyperparameter tuning and Stratified 5-fold cross-validation.
- Evaluation based on Accuracy, Sensitivity, Specificity, and Area under curve (AUC).

Discussion

- ML models performed better on the day of observation compared to one day before.
- . Results aligned with or outperformed similar studies.
- Models demonstrated potential for real-time mastitis detection but require further refinement.

Future Recommendations:

4

5

- 。Incorporate additional AMS variables (e.g., lactose content, lactation stage).
- 。Integrate sensor data from rumen bolus, pedometers, and environmental sensors.
- ^o Develop farm-specific predictive models for enhanced performance.

Conclusion

- ML models effectively predict mastitis using AMS-generated data.
- High accuracy and specificity make them promising for early disease detection
- Further refinement and sensor integration are necessary for real world application

Best Performing Model:

- SVM (highest accuracy & specificity)
- MLP (highest sensitivity)

RF, GB & MLP (highest AUC)

References

Petersson-Wolfe, C.S., Leslie, K.E., Swartz, T.H., 2018. An Update on the Effect of Clinical Mastitis on the Welfare of Dairy Cows and Potential Therapies. Vet Clin North Am Food Anim Pract 34, 525–535. https://doi.org/10.1016/j.cvfa.2018.07.006

- Bar, D., Gröhn, Y.T., Bennett, G., González, R.N., Hertl, J.A., Schulte, H.F., Tauer, L.W., Welcome, F.L.,
 Schukken, Y.H., 2007. Effect of Repeated Episodes of Generic Clinical Mastitis on Milk Yield in Dairy Cows.
 Journal of Dairy Science 90, 4643–4653. <u>https://doi.org/10.3168/jds.2007-0145</u>
- Ozella, L., Brotto Rebuli, K., Forte, C., Giacobini, M., 2023. A Literature Review of Modelling Approaches Applied to Data Collected in Automatic Milking Systems. Animals 13, 1916.
 https://doi.org/10.3390/ani13121916

