

Classical Scrapie in Icelandic Sheep

Identifying Risks and Protective Factors

Lina Spieß a,b, Christine Fasta, Sigurborg Daðadóttirc, Sigurbjörg Ólöf Bergsdóttird, Vilhjálmur Svanssone, Eyþór Einarssonf, Jörn Gethmannb

^a Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany; ^b Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Germany; ^c Ministry of Food, Agriculture and Fisheries, Reykjavík, Iceland; d Icelandic Food and Veterinary Authority, Selfoss, Iceland; e Institute for Experimental Pathology, University of Iceland, Keldur, Iceland; f Icelandic Agricultural Advisory Center, RML, Iceland

Introduction

Classical Scrapie is a fatal neurodegenerative disease affecting sheep, with a huge impact on economic sheep farming and animal welfare. Iceland has implemented extensive control measures to eradicate the disease, but outbreaks continue to occur, particularly in certain regions. This study aims to identify potential risk factors for disease transmission based on survey data from affected and non-affected farms across different regions of Iceland.

Methods

A questionnaire survey was conducted in three regions of Iceland between April and October 2024:

Region	Non-Outbreak Farms	Outbreak Farms	Farms in Total
Northwest Iceland	13	10	23
Southwest Iceland & Snæfellsnes	10		10
South Iceland	10	6	16
total	33	16	49

Table 1: Number of farms surveyed by region, categorized into outbreak and non-outbreak farms

The survey collected data about farm characteristics (land & flock size), annual management practices, animal movements, personal contacts and biosecurity measures. Risk factors were quantified and regional differences were analysed.

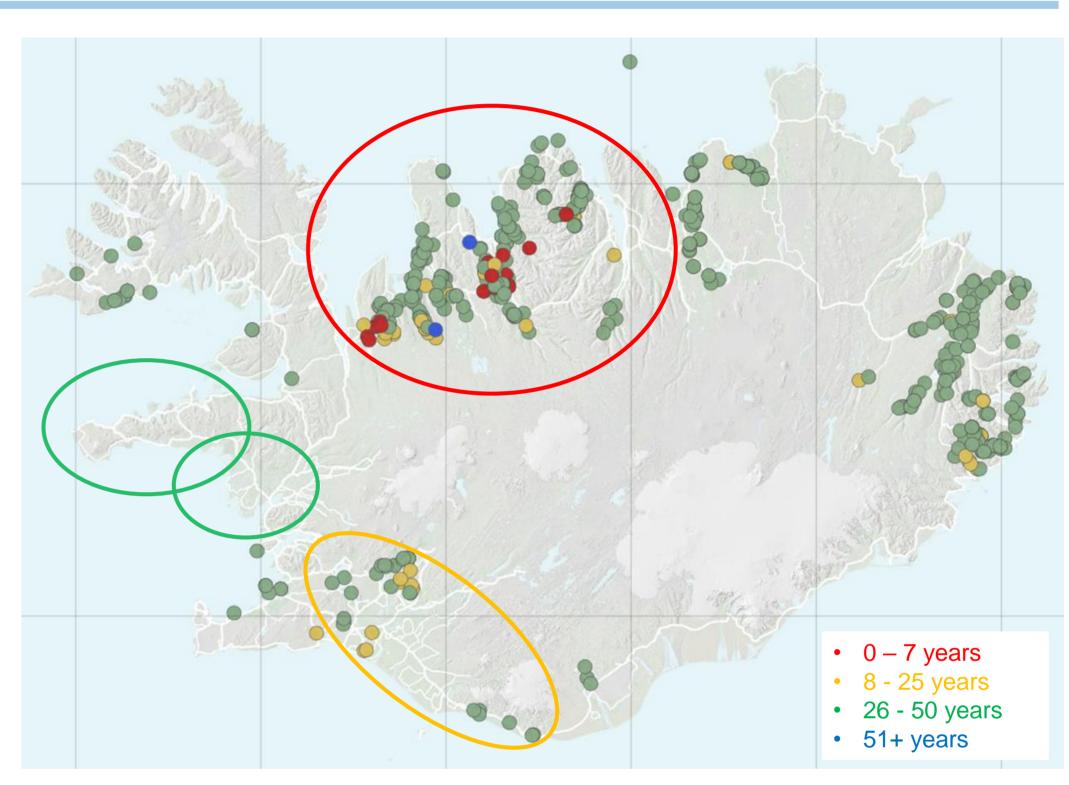


Figure 1: Scrapie outbreaks per year and region with main a cluster in the North Western part of Iceland

Results and Discussion

The persistence of Scrapie in Iceland is driven by factors like shared pastures, human and machinery movement. When livestock from multiple farms graze together, the risk of cross-contamination increases, especially strong biosecurity without measures. Machinery movement also spreads the disease, as equipment can carry it between farms. Farm size and burial practices further influence disease spread. Larger farms, with more animals and higher interaction, face greater risks, while carcass disposal on farm land, allows the disease to persist in the environment, complicating eradication efforts.

Factors	Potential Risk Factors	Potential Protective Factors	
Persons	 External persons E.g. Veterinarians, Artificial insemination E.g. Farm workers, tourists, agricultural school students 	• No extern persons	
Machinery	Shared machinery	 Only used on own farm 	
Management	 Common mountain pastures & Réttir Birth hygiene, birth on slatted floors Manure/slurry on own fields, hay mostly own production, straw purchase 	Own pasturesBirth hygieneDisposal of placenta	
Breeding focus	Natural breeding	Resistant genotypesGenotyped herdsArtificial insemination	
Disposal of Carcasses	Burial sides on farms	ContainerRenderer	
Sale/Purchase	Frequently sheep movements	Less sheep movementsMovement of resistant sheep	
Environment	Loss of natural barriersSheep losses on pastures (2-5%)	Natural barriers	

Table 2: Identified Risk and Protective Factors

Conclusion

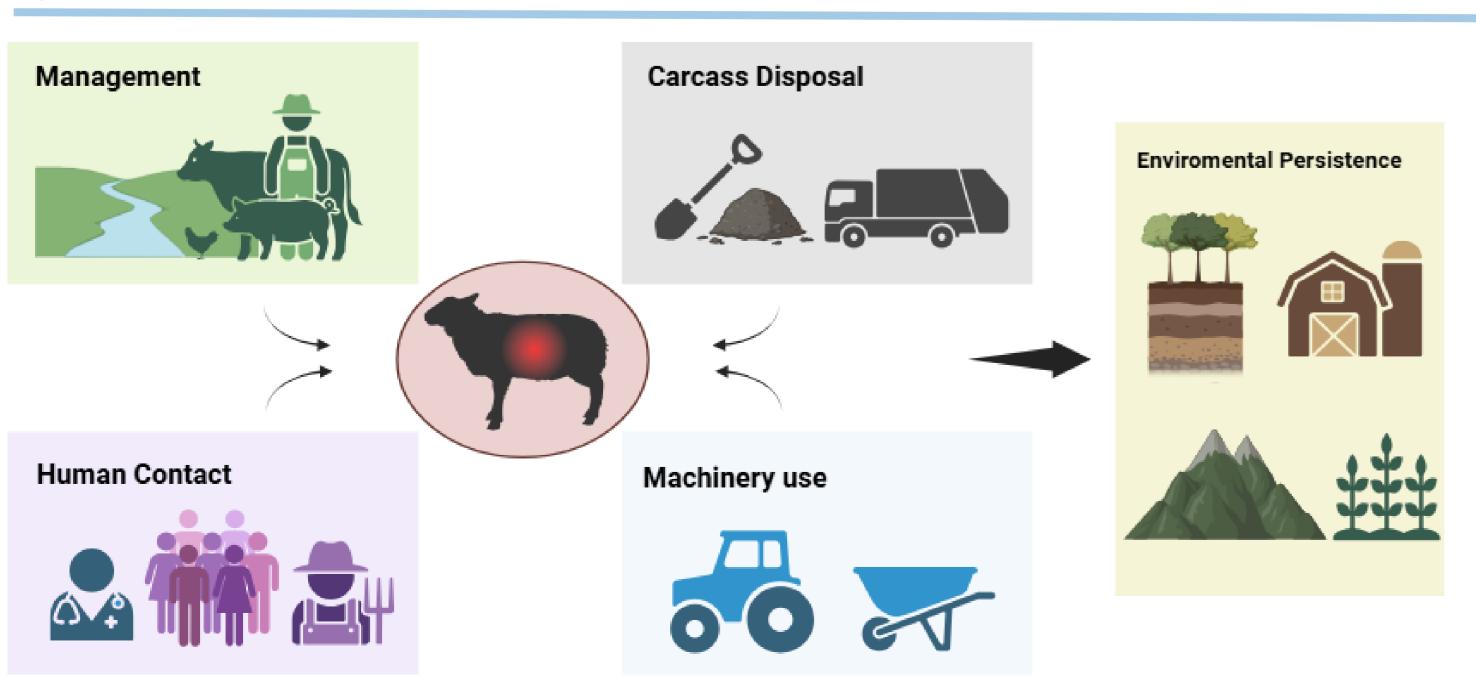


Figure 2: Key risk factors for Classical Scrapie transmission and environmental persistence

Scrapie persists in Iceland due to Contact Information: factors like shared pastures, farm machinery human and size, movement and improper carcass disposal. To reduce future outbreaks, strengthening biosecurity, breeding for genetic resistance, and improving carcass disposal are key strategies. These measures will help control the disease and work towards long-term eradication, ensuring a healthier sheep population.

Lina.Spiess@fli.de

